EDPACS

THE EDP AUDIT,
CONTROL, AND SECURITY
NEWSLETTER

SECURITY CONTROLS
FOR A CLIENT/SERVER
ENVIRONMENT

JENNIFER BAYUK

CIient/ server is a common term for a generic computing archi-
tecture in which desktop software uses shared information
processing resources that are not located actually on the desk-
top. The desktop software is the client. The computing plat-
form that holds the shared resources is the server.

This architecture is implemented in many different ways. There
is no line of demarcation that separates definitively all of the
client/server applications from other information processing
applications that involve communication between desktop soft-
ware and some number of servers. However, a simple terminal
emulation package generally is held not to be an example of a
client/server arrangement. But an application-builder software
product that functions as a front-end to multiple UNIX data bases
generally is held to be an example of a client/server mechanism.

The loose definition of a client/server application gives sys-
tems engineers broad latitude with which to design specifica-
tions for a client/server information architecture. This article:
[J Presents the options that systems engineers have in spec-

ifying a client/server architecture.

0 Explains the security vulnerabilities of these architecture
options.

O Demonstrates how the particular architecture choices that
the systems engineer makes constrain the choice of the
client/server security controls. (Specifically, this article
describes how the architectural implementation of user
access.and client-to-server connectivity prescribes the type
of control that is effective in providing assurance that the
client/server information is secure.)

O Offers the information systems auditor guidance in getting
started in the client/server controls testing process.

THE CLIENT/SERVER ARCHITECTURE OPTIONS

The client/server architecture access options are:
J Host-based.

UJ Application-based.

(1 Data base management system (DBMS)-based.

JUNE 1996 VOL. XXIil, NO. 12

Editor
BELDEN MENKUS, CISA

AUERBACH PUBLICATIONS
A Division of
Warren, Gorham & Lamont

E DP AC S

JUNE 1996

L

L
A SIMPLE TERMINAL
EMULATION
PACKAGE
GENERALLY

IS HELD NOT TO BE
AN EXAMPLE OF A
CLIENT/SERVER
ARRANGEMENT.

Host-based access employs such authentication mechanisms
as the file transfer protocol of the host operating system con-
trol access. Application-based access means that a particular
application has been written that runs as one user on the server
and that all of the clients have access to this application by virtue
of their being authenticated to the application process. DBMS-
based access means that the authentication mechanisms are pro-
vided by a server-located mechanism (e.g., one that employs an
array of third-party reporting tools). Any of these three types
of access mechanisms are automated from the desktop.

The client/server architecture connectivity options include:
O A direct private line to a server.

O A LAN to a server.
0O A LAN/WAN combination to a server.

In the direct private line scenario, the server port still is
running under the legacy system protocol. The communica-
tion mechanism that is being employed operates in a serial
mode. It even may be synchronous. The line admits one con-
nection at a time. In the LAN or WAN scenario, the server
port has been converted to the protocol of the LAN. It becomes
a node on the network and receives the same network traf-
fic as does any workstation. The tendency is for a progres-
sively wider range of resource users to have access to any
particular server. This allows a particular piece of client soft-
ware to be deployed anywhere on the network. Where the
user connectivity is accomplished through a LAN or a WAN,
the controls that are employed must assume that the
client/server data potentially is available at every access point
on the network.

THE CLIENT/SERVER SECURITY ISSUES

The information systems security threats to a client/server
architecture are:

U Spoofing.

[Browsing.

U Penetration.

[0 Bavesdropping.

Spoofing involves posing as a legitimate network access point.
This might result from configuring several TCP/IP network
services to use the host name of a machine to authenticate
legitimate users. However, an unauthorized user can change
the host name of his or her own computer to the name of an
authorized host and then spoof the targeted TCP/IP service
into authorizing some number of otherwise unauthorized users.

Browsing involves an attempt by a user to access services
for which this person has no authentication. The services may
be ones for which no authentication is required (i.e., the world
wide web). In addition, the services may be those that require
a password, such as the log-in process.

Penetration involves bypassing the intended user informa-
tion processing application to be able to attack the server itself.
The penetrator may then access other applications on the server,
disrupt some or all of the applications on the server, or install
computer viruses or Trojan horses on the server itself.

JUNE 1996

EDPACS

Eavesdropping involves capturing data from a shared com-
munications vehicle (i.e.,a wide area network). The data that
is acquired may include a log-in sequence, revealing a log-in
name and its corresponding password. Hence, eavesdropping
may be used to facilitate browsing.

The client/server architecture connectivity mechanisms are
used determine the type of security threat that may occur.
Direct connectivity, thus, is subject to browsing. LAN or WAN
connectivity, however, is subject to both eavesdropping and
browsing. Access mechanisms, then, are relied on to control
the threats that may be introduced by employing a particular
connectivity architecture. However, these mechanisms in turn
are subject to threats.

Desktop software is dispersed widely and fully. It is under
the control of a diverse population of users who employ ever
more powerful machines. The only safe assumption is to not
rely in any way on a secure desktop configuration. No pass-
words or other authentication mechanisms should be built into
the desktop client/server application software. Rather, reliance
for both local and remote access controls must be placed on
the server itself. But access to the server is subject to both
spoofing and penetration.

The information systems security architecture has the same
components regardless of configuration of the computing archi-
tecture that is to be secured. Despite the inherent flexibility
of these configurations, the client/server security controls fol-
low the same principles as did their predecessors:

O Prevention (also known as access control).
[Detection.
(1 Recovery.

A server must control against the possible corruption of its
clients by being unspoofable. It must employ mechanisms that
allow for the authentication of users, rather than the authen-
tication of machines. In addition, the server must be unpene-
trable. It should allow access only to those resources that are
required by the specific application. However, if a server is
spoofed or penetrated, it should detect the fact that this has
occurred. Even if the server fails to detect that it has been com-
promised, it must be able to recover from a successful attack.

CLIENT/SERVER PREVENTION CONTROLS

For each combination of access and connectivity architecture,
unique threats and corresponding controls exist that should
be applied to counter them.

Controls for Host-Based Access

The most effective server host-based access control for pro-
tecting against the occurrence of spoofing and browsing is to
disable all of the host-provided services that are not absolutely
necessary for client applications. Thus, there should be no devel-
oper emergency access in place, no use of production machines
for handling routine electronic mail, and no file transfer mech-
anisms enabled to facilitate biannual software updates. These

G
HOST-BASED
ACCESS EMPLOYS
SUCH
AUTHENTICATION
MECHANISMS AS
THE FILE TRANSFER
PROTOCOL OF THE
HOST ORPERATING
SYSTEM CONTROL
ACCESS.

E DP ACS

JUNE 1996

L

D
BROWSING
INVOLVES AN
ATTEMPT BY A
USER TO ACCESS
SERVICES FOR
WHICH THIS PERSON
HAS NO
AUTHENTICATION.

convenient extras introduce security vulnerabilities that even
yet may be undiscovered. By minimizing the number of ser-
vices that are available on a given server, an administrator
minimizes the complexity of access administration.

Host-based access controls against penetration include
employing restricted menus and narrowly defined user
groups. Restricted menus ensure that users may not wander
from their intended path into other areas of the operating sys-
tem. These may not be within the focus of the existing secu-
rity efforts. These controls include application scripts that start
to function when a client is connected and that disconnect the
client connection when the script is exited. (The exit may be
controlled by the application or it may be the result of an unin-
tended event (e.g.,the user pressing a break key.) Narrowly
defining both the user groups and the appropriate file per-
mission configuration will ensure that even if users do wan-
derthey cannot get far enough to penetrate vital host services.

Host-based access controls against eavesdropping are
encryption and token-based authentication. The degree to which
the information in client/server arrangements should be
encrypted depends on the confidentiality of this information.
Log-in sequences are the primary examples of highly confi-
dential information. If eavesdropping reveals a particular log-
in and password combination, the corresponding account will
be compromised. Where both the log-in sequence and the infor-
mation that is transmitted between the client and the server
are confidential, the only way to control eavesdropping is
through encryption.

Encryption may be implemented in the hardware commu-
nication device, the software communications protocol, or in
the information processing application software. If encryption
is implemented in the application software, then it is possible
to restrict encryption only to the most sensitive data items.
The items that are protected always should include the log-in
sequence. (This restriction may be enforced for performance
reasons.) However, if encryption is done in the hardware device
or in the communications protocol, then the same mechanism
automatically will encrypt the log-in sequence as well.

When only the log-in sequence is confidential, another way
to control eavesdropping compromise of the log-in sequence
is to make the captured information useless by employing
authentication mechanisms that require the use of hand-held
tokens. These devices replace the conventional password with
an authentication message that changes with each access. This
message change prevents the reuse of an eavesdropped authen-
tication message for unauthorized access.

Controls for Application-Based Access

Application-based access controls for protecting against the
occurrence of spoofing and browsing are those application sub-
routines that comprise the access mechanisms themselves.
No assumptions should be made concerning the following:

[J Robustness of these mechanisms.

JUNE 1996

E DPACS

—

[J Degree to which encryption is used in storing or transmit-
ting passwords.

[J Features of these mechanisms being coincident with those
available from the underlying host operating system or DBMS.
Application-based access mechanisms are written entirely

independently of either the host operating system or the DBMS.

Usually this is done to facilitate the portability of the source

code. Hence, these mechanisms do not use the authentication

and authorization mechanisms that are provided by the host
operating system or the DBMS. Authorization is granted to
execute an application subroutine rather than to view or to
modify a data file. In addition, the application user or admin-
istrator need not be a privileged UNIX or DBMS user.
Because every application has a different method of imple-
menting the access mechanisms that it uses, careful attention
to application specifications will reveal whether the application-
based authentication and authorization mechanisms provide suit-
able controls to protect against spoofing and browsing. A server
application and a client application handshake subroutine may
be implemented to ensure that the users are able to employ only
the expected software access mechanisms to enter the applica-
tion. There should be no need to employ other ad-hoc access rou-
tines to do this. This is especially true where they may have
been developed for application support or administration.
Application-based access controls for penetration are also

application subroutines. As is true with the host-based access
controls that are designed to prevent system penetration, these
are implemented through the use of restricted menus and nar-
rowly defined user groups. Yet, the application users are not
defined within the operating system. They are defined within
the application itself, so there is a greater risk involved in a
successful user exit from the application to the operating sys-
tem. The application normally will run as an operating sys-
tem user who has full control over the entire application. Thus,
were a user to exit to the operating system, it would be as
that privileged user. Application-based access controls for pen-
etration must ensure that any type of exit from the applica-
tion also disconnects the client from the server. As is the case
with host-based access, application-based access controls
against the occurrence of eavesdropping are encryption and
token-based authentication.

Controls for DBMS-Based Access

As in the case of application-based access controls for spoof-
ing and browsing, no assumptions should be made concern-
ing the available controls for DBMS access. Many data base
management systems do not store passwords in an encrypted
format or allow for the encryption of the log-in sequence over
the network. Those that do allow some level of encryption
should be configured properly to make use of the feature. The
more secure DBMS configuration rarely is the default on instal-
lation. Some DBMS-based authentication mechanisms will use
the password that is supplied by a user operating system
account and some will not. If controls against the occurrence

D
ENCRYPTION MAY
BE IMPLEMENTED IN
THE HARDWARE
COMMUNICATION
DEVICE, THE
SOFTWARE
COMMUNICATIONS
PROTOCOL, OR IN
THE INFORMATION
PROCESSING
APPLICATION
SOFTWARE.

E DP ACS

JUNE 1996

L]
NO ASSUMPTIONS
SHOULD BE MADE
CONCERNING THE

AVAILABLE
CONTROLS FOR
DBMS ACCESS.

of spoofing and browsing do not exist within the DBMS, they
must be custom-written and integrated into the DBMS session
connection routines.

DBMS-based access controls against penetration are the
restriction of data access to predefined DBMS procedures and
the narrow definition of the user groups. Restricting data access
to predefined procedures allows an administrator to set per-
missions by job function. Users are granted access only to
those procedures that they should employ to perform their
jobs. They are not granted direct access to any data base table.
Narrowly defining the size and the composition of the user
groups limits the number of the data base procedures to which
any user has access. These controls combine to ensure that
even if the users are able to penetrate the underlying DBMS
they cannot do any more damage to it than they could do through
their application screens.

Because DBMS users need not be defined within the oper-
ating system and they may be defined only within the DBMS,
this DBMS-based access architecture is subject to the same
increased penetration vulnerability as that which already has
been described for application-based access. The DBMS runs
as a privileged system user. Hence, a successful user pene-
tration from the DBMS to the operating system may result in
the user gaining full permissions over the entire DBMS. As in
the cases of host-based access and application-based access,
DBMS-based access controls for eavesdropping are encryption
and token-based authentication.

Client/Server Detection Controls

Because theusers of a client/server arrangement are dispersed
widely, the detection controls for spoofing and browsing start
with the controls on the identification of users. Users must pro-
tect both their individual log-ins and passwords by not storing
them on the client or sharing them among groups with similar
Jjob functions. A data base of the user access requests often may
be drawn from a customer support application to facilitate fre-
quent automated comparison between the authorized user lists
and the server access control lists. Assuming that it is possible
to identify the users individually, user log-ins may be monitored
for suspicious activity. This activity may include multiple invalid
access attempts, simultaneous sessions, and other indications
that the person using the log-in is not the authorized user.

Manual processes must ensure that highly suspicious events
are investigated and resolved. Systems that have been pene-
trated are compromised often in such a manner that the per-
petrator will find an easy method of access in the future. The
perpetrator accomplishes this by altering the system files that
pertain to the access mechanisms. A control to detect such
client/server penetration is to inventory the system files and
to archive them together with algorithmically-derived authen-
tication stamps. The frequent comparison of these archived
files will allow for the detection of file tampering.

An additional detection control for penetration is statement
level auditing. These types of audit logs should be archived

JUNE 1996

E DP ACS

—

frequently on a non-production, security-administered sys-
tem. Doing this will allow an investigator to identify any user
log-in that had been compromised to perform the penetration.

Few available detection controls against client/server eaves-
dropping exist. At most, a skilled communications technician
may be able to devise a system that will issue an alert when
unknown machines connect to the LAN or WAN. However, even
when such an alert system exists eavesdropping from autho-
rized network connections will remain unnoticed.

Client/Server Recovery Controls

The recovery of a client/server application from the effects
of a security incident may proceed at either the client or the
server level. A robust client/server architecture will be designed
so that the client can be completely replaceable. Following a
security incident, the memory of a client that has been com-
promised must be wiped clean and its hard drives reformait-
ted. In addition, a complete copy of the operating system and
the software that was being used with it should be installed
to replace the compromised platform. No configuration files
should be saved, even if they are specific only to an individ-
ual user. The clients should be designed so that this process
is relatively quick and painless.

At the serverlevel, recovery after a security incident occurs
may be more difficult. It may not be possible to decommission
the server long enough to reformat and reinstall its contents
completely. A statement-level audit of the server content that
is copied to a nmonproduction, security-administered system
will identify the extent of the damage that has occurred. The
audit logs must indicate clearly the actions of the individual
users. In addition, audit trails must be selectable by user.

The audit logs produce voluminous data, which servers often
do not have the capacity to store indefinitely. Restoration of
stored media may be required to recover an audit trail or a
data base transaction log. Backup mechanisms must allow for
targeted restoration of only the affected data to minimize the
impact of this reconstruction on already-operating processes.
The availability of DBMS table-specific backup or editable trans-
action logs will speed the recovery process.

TESTING CLIENT/SERVER SECURITY CONTROLS

Just as the security architecture has the same components
regardless of the architecture that is to be secured, controls
testing has the same components regardless of the architec-
ture that is to be tested. Despite the flexible nature of the con-
figurations that are to be tested, client/server security audits
follow the same outline as those that are carried out with main-
frame computers:

(J Standards, policies, and guidelines.

O Operating system security.

UJ Application security.

U]l Remote access.

U Data base management.

G
AN ADDITIONAL
DETECTION
CONTROL FOR
PENETRATION IS
STATEMENT LEVEL
AUDITING.

E DP ACS

JUNE 1996

D
THE LIST OF THE
ASSETS THAT ARE
INVOLVED IS
CRITICALLY
IMPORTANT IN
TESTING THE
CLIENT/SERVER
ARCHITECTURE'S
SECURITY
CONTROLS.

[} Program change control.

[J Physical security.

[0 Business recovery.

However, the tests that fall under those outline headings are
quite different from the control tests on mainframe computers.
They will vary considerably between the various client/server
applications. To decide what to test for a given client/server appli-
cation requires research into every component of the application’s
architecture. The initial steps in performing that research are:
[J Obtaining an architecture diagram and a list of architecture

components. (If such detailed schemas are not available,

that is the first finding that should be reported under the
category of standards, policies, and guidelines.)

(] Reviewing the documentation on the software development
tools used to create and maintain the architecture. The devel-
opment tool standard log-in IDs and the default passwords
should be noted.

[0 Visiting the development environment and learning the
names and nicknames of the machines and the people work-
ing there so that they can be recognized if they are encoun-
tered again in the production environment.

[] Gathering automated tools for testing the architecture com-
ponents. A network eavesdropping surveillance tool should
be included in this collection.

{1 Making a list of the information assets and the tangible assets
that are accessible through the targeted application.

The list of the assets that are involved is critically important
in testing the client/server architecture’s security controls. It
is the design and nature of this architecture to provide both
accessibility and flexibility to its end users in their pursuit of
information services. Hence, demonstrating the absence of a
security control, even one that is planned, is not effective unless
this demonstration is accompanied by a showing that an asset
is at stake. It is possible to use a standard audit plan for each
architectural component as a guide in examining the security
of the client/server, but the information systems auditor should
design all of the tests with the goal of accessing one or more of
the assets. It should be remembered that it often is necessary
to demonstrate the absence of control in two or more architec-
tural areas to demonstrate that particular assets are at risk.

THE FUNCTION OF CONTROLS IN CLIENT/SERVER

A client/server architecture may be controlled in general by using
the same control capabilities that are effective for the respective
individual platforms. Hence, maximum use should be made of all
of the existing control capabilities at the host, the application,
and the DBMS levels. However, the flexibility that is inherent in
the client/server architecture also calls for the use of extended
controls over access that is provided to it. This may take the form
of token authentication, confidentiality in the form of encryp-
tion, and auditability in the form of transaction archives. ®

Jennifer Bayuk is a data security practice manager at Price Waterhouse in Mor-
ristown NJ. Before joining Price Waterhouse, she was a senior internal auditor
at AT&T. Bayuk first joined AT&T as a software engineer at Bell Laboratories.

