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ABSTRACT

Security metrics have evolved side by side with the advent of security tools and techniques. They have
been derived from the techniques rather than specified as system requirements. This paper surveys the
evolution and state of the practice of security metrics from both a technical and historical perspective. It
describes the evolution of currently popular security metrics, and classifies them to illustrate their utility
in systems engineering verification and validation activities. It provides criteria with which to evaluate
security metrics based on system purpose and architecture. The criteria are illustrated using a case study
of Cloud System security. © 2012 Wiley Periodicals, Inc. Syst Eng 16: 1-14, 2013
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1. CONCEPTS IN SYSTEMS SECURITY

Though most systems engineers have some experience with
security metrics, security is not a focus for the profession.
There is no set of security metrics that has repeatedly demon-
strated utility in an engineering context. A recent issue of
INCOSE Insight dedicated to security expressed concern that
the security metrics community *“does not want to address any
fundamental challenges like developing a theoretical basis for
measurement, identifying basic underlying things that might
be worth measuring, or providing any sort of mathematical
basis for doing anything with the measurements they pro-
vide” [Cohen, 2011, p. 31] The reasons why the utility of
traditional security metrics may have been dismissed by any
given systems engineer will vary with the experience of the
individual. Experience matters because different systems en-
gineers may have been presented with entirely different sets
of measures under the name of ““ Security Metrics.” These sets
may have been compiled in support of decisions concerning
different aspects of security.
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To illustrate different aspects of security that may be
measured differently, we use a systems engineering job aid
used to make sense of complex concepts, a systemigram
[Boardman and Sauser, 2008]. A systemigram is read from
left to right, top to bottom. The system to be defined is placed
in the top left, the mission or purpose of the system is placed
in the bottom right. Concepts that assist in understanding the
system are placed in between and linked using verbs. The
systemigram in Figure 1 was composed by a team of security
systems engineers collaborating on a research roadmap. They
were challenged to come up with a shared definition of
security, one that would be recognized within the security
community. Hence the criteria for the definition of security
was that it be “face-valid,” as the measurement of face
validity reflects general agreement in the layperson’s opinion
that a given measurement technique is suitable or unsuitable
for its expected use [Nevo, 1985]. The line that reads from the
top left to the bottom right is that definition, and, in the context
of a systemigram, it is called the “mainstay” thread. The
mainstay is a high-level concept definition that is generally
agreed by those who best understand the system to be defined.
However, a complex system will typically be understood in
specialized contexts, and the systemigram tool supports that.
Figure 2 shows different perspectives on system security that
enrich the skeletal concept outlined in the mainstay. The
portion of Figure 2 that links to the circle labeled ““infrastruc-
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Figure 1. A systemigram mainstay for the concept of systems security. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 2. Systems security systemigram with multiple perspectives. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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tures” demonstrates that those who work in information
security tend to conceptualize security in terms of information
attributes that are subject to similar types of threats and
disruptions. The portion labeled “controls” adopts the point
of view of a network security engineer, who typically views
security in terms of preventive, detective, and corrective
controls designed to minimize vulnerabilities and reduce risk.
The “management” portion adopts the perspective of security
from the point of view of technology governance. The
“audit” and “investigators” portions similarly represent the
corresponding viewpoints. The full systemigram provides a
holistic view of security that depicts it as having multiple
stakeholders.

Each of these systems perspectives has an associated set
of security metrics of interest to the faction of the security
community who created them. Figure 3 provides some exam-
ples of security standards that have been used as a basis for
metrics by each community of stakeholders that correspond
to systemigram threads. Originally conceived as job aids,
these collected best practices have become the defacto basis
for security audit and assessment, and in fact are criticized by
auditors when they cannot be readily adopted for that purpose
[Ross, 2006; Oud, 2005]. Thus systems engineers are often
presented with one or more of these standards documents as
if they were systems engineering requirements. For example,
a recent systems engineering textbook with multiple re-
spected systems engineer authors describes security as “re-
lated to system attributes that enable it to comply with
regulations and standards” (e.g., in Larson et al. [2009: 114],
security requirements are said to originate from industry
standards). As standards are assumed to be verifiable, they
have ipso facto become requirements, and by extension, a
basis for security metrics.

Each of the communities of security professionals who
created the standards documents drew on considerable suc-
cessful professional practices, and these communities include
prestigious security subject matter experts. It is not the inten-
tion of this article to question the experience or judgment
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Figure 3. Systemigram map to security standards.
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invested in creating security standards. Rather, we try to help
systems engineers see where there may be value in evaluating
the security metrics that these experts have produced. To
provide such a perspective, we introduce the provenance of
some of these standards.

2. HISTORY OF SECURITY METRICS

Even before electronic systems, physical security standards
existed that concerned the strength of materials required to
thwart a design-basis threat (DBT), and these continue to
support the physical threat surfaces of our systems [Garcia,
2008]. The first computer security metrics did not actually
measure any attribute of a system itself, but instead confirmed
its correct operation by comparing physical batches of input
to output and manually performing electronic calculations to
ensure that the system was functioning properly. As system
security auditors became more sophisticated at designing tests
of correct operation, this input-to-output comparison was
deprecated, and derisively referred to as “auditing around the
computer” [Bayuk, 2005]. Since the early 1970s, members of
the Electronic Data Processing Audit Association, which has
evolved into the Information Systems Audit and Control
Association, have shared tests and practices for determining
whether management properly controls the deployment and
operation of automated systems. These include both physical
and electronic security measures. As security is essential to
ensure that systems are restricted to authorized use, security
testing has always played a significant role in systems audit
practices [Bayuk, 2005]. As security management practices
evolved, system security audit standards followed, because the
audit community continually updates audit best practices stand-
ards in correspondence with security management practices.
The first document that was considered a systems security
technology standard was the Orange Book, and undertaking
of the then US National Bureau of Standards (NBS), the
organization that later became the National Institute of Stand-
ards and Technology (NIST). The Orange Book standardized
many of the security terms we take for granted today, like
identification, authentication, and authorization. It introduced
the notion of a trusted path that enforces integrity of commu-
nication between user commands and systems processing of
those commands. It specified a hierarchy of system security
features. The lowest was minimal, or none. The most com-
monly achieved was discretionary; that is, users had to be
granted access to data and functions but could share them. The
highest was mandatory access control, a requirement that
subject classification level match labels on the data to which
they have access, and also that all access was controlled and
auditable. In addition, the design had to be validated using
formal methods. Before it was even published, people were
designing tests to check for the different types of technology
features that are recommended by the Orange Book, so the
Orange Book became the original systems security certifica-
tion and accreditation standard. However, there were draw-
backs to using the Orange Book as a system security
certification because the scope of Orange Book testing was a
single device, a technical target of evaluation or assessment
(TTOE or TTOA). By the time the Orange Book was widely
known, nearly all computing devices of interest were net-
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worked, but many of the Orange-Book-certified systems did
not include security features rich enough to maintain their
Orange Book compliance ratings once they were augmented
to accept TCP/IP input. Firewalls external to the system
became an acceptable method of maintaining network secu-
rity, and these devices incorporated only a subset of Orange
Book requirements.

By the early 1990s, the recognition that security features
requirements were dependent on operational context
prompted NIST to follow the Orange Book with a project
called “Common Criteria” [Merkow and Breithaupt, 2005].
The Common Criteria allowed product owners to be selective
in identifying a set of security functions, allowed the system
designers to specify their own “Security Target,” and speci-
fies an evaluation mechanism designed to ensure that the
Security Target is met. As in the Orange Book, the Common
Criteria specifies hierarchical levels of validation, and the
resulting security rating reflects the level of testing that was
successful. The lowest level is functional, followed by struc-
tural, and then methodical. Higher ratings may be obtained if
it can be demonstrated that the product was methodically
designed, and even higher by being semiformally or formally
verified. The Common Criteria has since evolved into an
international standard [ISO/IEC, 2009a].

Also in the early 1990s, organizations attempting to use
the Orange Book and Common Criteria as a design guide
determined that it was not enough for a computer to have
security features, the features had to be configured and oper-
ated properly in order for the organization to achieve the
desired level of security from the systems that had the fea-
tures. Simply to know devices had passed tests was not an
appropriate measure of whether they have been integrated
properly to achieve system security. This recognition led a
diverse set of volunteers from a wide variety of organizations
to participate in the development of the System Security
Engineering Capability Maturing Model (SSE-CMM). Also
now an International Standard, this model is a system devel-
opment lifecycle (SDLC) planning exercise designed to en-
sure that security requirements have been properly addressed
in the design phase, and thereby to ensure that successful
testing against security requirements would be included as
both quality assurance and operational deployment tollgates
[ISO/IEC, 2002]. In addition to measuring whether security
planning processes are reliably executed and successful, the
SSE-CMM provides systems engineers with a checklist of
security controls to consider at each stage of the development
lifecycle, from requirements to disposal. The process meas-
urements and associated control checklists are used to derive
security metrics.

Though the SSE-CMM does include guidance concerning
considerations for secure system operations, in practice, the
root cause of many system security failures are due to lapses
in executing operational process as opposed to planning them.
In an attempt to provide guidance on how to avoid these
security management lapses, NIST proscribes ways that se-
curity should be managed in computer systems. Most of the
security management metrics we have today follow the gen-
eral strategy of the 1995 NIST Computer Security Handbook
[NIST, 1995]. The handbook addressed organizational ac-
countability for security risk management as well as manage-
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ment controls such as policy, education, and incident re-
sponse. This handbook evolved into the Recommended Se-
curity Controls for Federal Information Systems [Ross et al.,
2007] that has become the basis for Federal Information
Security Management Act (FISMA) regulatory guidance [US
Congress, 2002].

While NIST was composing the Computer Security Hand-
book, in the UK, security professionals were converging on
British Standards for security management. The UK approach
aimed for a higher level of management accountability, and
placed more focus on management planning for security, but
otherwise generally recommended the same types of controls
as the NIST version [DTI/CCSC, 1995]. The UK security
standard has evolved into the International Standards
(ISO/IEC) 27000 Series [ISO/IEC, 2005a, 2005b, 2008,
2009b]. This series has become the basis for security manage-
ment metrics as well as for ISO Security Certification exer-
cises.

These security management practices evolved in an era of
recurring destructive computer worms and viruses. Since the
first such program was unleashed in 1988, a US government
funded Computer Emergency Response Team (CERT) had
been steadily working to develop incident response proce-
dures, which have been since codified as standards [Allen,
2001]. Prevent, detect, respond has always been a mantra in
the physical first responder community, and its systems cor-
ollary is prevent, detect, recover. As the ability to effectively
recover relies on root cause analysis, this type of standard
introduced metrics for log collection and automated change
detection.

By the 1990s, the best method of thwarting viruses was to
rely on antivirus software to identify and eradicate each virus.
However, because multiple viruses would be written to ex-
ploit the same system software vulnerability, it was more
efficient to continually update operating systems to eliminate
known the software vulnerabilities that the viruses exploited.
To keep track of all these vulnerabilities, NIST proposed a
dictionary of publicly known security vulnerabilities and
exposures using common terms and names, and this has been
realized under a project managed by The MITRE Corpora-
tion, the Common Vulnerability Enumeration (CVE) [MI-
TRE, 2011a]. The CVE is one of several software
vulnerability-related enumeration categories under a more
general NIST effort known as the National Vulnerability
Database [MITRE, 2011b]. Another example of an NVD
enumeration is a Common Weakness Enumerator (CWE).
This lists common mistakes that software developers make
that expose systems to hacking attempts, such as the lack of
input validation. Security software developers use NVD ef-
forts to create security metrics by scanning system to see if
they have any vulnerability on the list, and counting them.
These security testing tools have been aptly christened *“bad-
ness-o-meters” [McGraw, 2006]. The word badness-o-meter
is appropriate because, if you have NVD vulnerabilities, you
can tell your system security is bad, but the absence of an
NVD list of vulnerabilities in your system does not necessar-
ily mean that your security is good. There could be software
vulnerabilities that are not yet catalogued by NVD, or there
could be design flaws that expose systems despite their use of
secure software. The NVD community has established met-



rics that correspond to its vulnerability lists in the form of a
Common Vulnerability Scoring System [Mell, Scarfone, and
Romanosky, 2007]. These metrics provide a scale that only
has bad security on it, but no measure of good security.

3. TYPES OF SECURITY METRICS

As metrics are fundamentally tools for decision-making, the
perspective of the decision-maker is important. However,
metrics that are useful for analyzing one aspect of security
may not be useful for analyzing another aspect. Even within
a single perspective, such as that of a network security engi-
neer, security metrics that assist in determining whether a
given system is secure may not be useful in determining
whether a different system is secure. For example, a set of
security metrics that are valid in ascertaining the security of
a news media website will appear woefully inadequate in
ascertaining the security of an electronic banking website.
Nevertheless, today’s security standards adopt a one-size-
fits-all approach in both perspective and content. The system
of interest is assumed to be well understood by the standards-
reader. It is assumed that there is a decision-maker who is
qualified to judge the potential impact of security weakness
and also is in a position to accept responsibility for security
risks. They generally provide a process for examining the
system of interest with the goal of minimizing vulnerabilities.
Figure 4 is a systemigram that depicts security standards
generically. Figure 5 supplements the systemigram elucida-
tion of how security standards work. They generally recom-
mend reducing a system into inventory components that can
be assessed independently for risk, and then these risk assess-
ments are composed into an overall metric that dictates some
recommended controls. Figures 4 and 5 simplify but do not
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Figure 5. Security standards methodology.

exaggerate the simplicity of the structure of today’s security
standards. Today’s standards contain little guidance by way
of methods, processes, or tools with which to analyze systems
or system components, nor to create relevant systems-level
security requirements. They do not even provide guidance on
how to question a system owner or operator as to the judgment
on whether a control is necessary. Hence, they are reducible
to instructions in the technical implementation of best prac-
tices.

Note that standards documents have evolved for each
perspective corresponding to the threads of our security sys-
temigram, and these have all been codified by standards
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Figure 4. Systemigram of security standards. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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compliance organizations as security metrics. So, given the
way security metrics have evolved, they can be categorized
generally into things that measure TTOA, SDLC, Security
Management, or Security Vulnerabilities.

A TTOA metric is typically quantified with respect to a set
of security targets, a set of tests for criteria, and a percentage
of targets that have passed the tests. These measure the extent
to which technical controls identified by some standard have
been implemented. The basis for the metric may be any kind
of standard that includes technology recommendations, rang-
ing from the Orange Book to an enterprise department-spe-
cific security technology configuration specification.

An SLDC metric is normally quantified by listing activi-
ties and monitoring the execution of that activity. Also called
a process metric, its goal is to determine whether process is
followed. Those developing process metrics find ways to
collect data as information flows through the process in the
course of its execution, and report on whether all process steps
were correctly followed for each case, and in aggregate.

Security metrics based on the presence of vulnerabilities
are typically quantified by classifying the vulnerabilities iden-
tified in a scan by potential impact. That is, a scenario is
envisioned where a successful exploit takes advantage of each
vulnerability, and a judgment is made on the extent to which
the successful exploit would negatively impact the organiza-
tion (typically using the ordinal scale: low, medium, high).
The number of vulnerabilities in each class is counted and
presented in graphical format. A vulnerability metric would
normally be presented in conjunction with a vulnerability
remediation plan, and hence may be thought of as Security
Remediation Metrics.

A Security Management metric is typically quantified as a
dashboard of departments or organizations, with some quan-
tification indicating the extent to which both target, process,
and remediation metrics are met. Security management met-
rics typically also include measures of activity such as inci-
dents investigated or access control administrative tasks
performed. These do not always necessarily always measure
the security environment, but typically also measure re-
sources consumed in maintaining security. There are no stand-
ards for what types of metrics should be included in these
dashboards.

Security metrics may therefore generally be classified as
target, process, remediation, or management activity metrics.
Figures 6-9 illustrate the approaches.

The type of metric that most closely aligns with systems
engineering activities is a process metric. Figure 10 is an
example of a systems engineering process that is designed to
produce system security requirements. Where such processes
are formalized, they are typically performed as a specialty
engineering task in systems security engineering led by a
systems security engineer [INCOSE, 2011]. The output of the
process is a set of requirements that is then provided back to
the lead systems engineer. Where metrics are collected on the
process itself, they are maintained as a collection of tollgates
met and milestones achieved. The steps in a security require-
ments process are often very similar to the process of gather-
ing security requirements to be incorporated into a software
development project [McGraw, 2006]. As the author of Figure
10 put it, the process model provides “a structure within
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which a security framework is defined for a system; a place-
holder for metrics as the assessment function is refined” [Oren,
2012, p. 25]. This refers to the security engineering function, not
to the security metrics that will eventually be derived from the
requirements that the security function produces.

The discussion above concerns security standards that
have evolved into associated security metrics. These do not
include the full set of candidates in the literature on security
metrics. The full suite includes security metrics for mathe-
matical modeling of security management processes [Berres
et al., 2009], weighting network forensics evidence to in-
crease probabilities of conviction [Amran, Phan, and Parish,
2009], quantifying threat surface using hidden Markov mod-
els [Wang et al., 2010], using game theory to determine
security investment strategies [Carin, Cybenko, and Hughes,
2008], and complex mathematical models for assessing soft-
ware security [Alshammari, Fidge, and Corney, 2009]. Most
of these are the subject of one or two papers by the same group
of authors, and rely on data that are not completely described
(and also usually includes subjective measures of prob-
ability). A practitioner reading these types of hypothetical
usefulness cases recognizes that there are more straightfor-
ward ways to assess the security of the target environment.
So, although they are included in the security metrics litera-
ture, they will not be included herein.

There are at least 900 measures/metrics that exist in the
literature for measuring security. This can be stated with
certainty because more than 900 are listed in Herrmann’s
2007 book, A Complete Guide to Security and Privacy Met-
rics [Herrmann, 2007]. Herrmann only included metrics that
she considered appropriate for use in decision-making by
practicing auditors, engineers, and managers. Herrmann’s
intent was to create a useful menu for security practitioners,
and so she purposely excluded metrics that were abstruse or
that relied heavily on an intuitive understanding of complex
mathematical models. This idea is echoed in security litera-
ture: that metrics which form the basis for decisions should
be well understood. As Jaquith put it, “transparency facili-
tates adoption by management” [Jacquith, 2007: 20]. As
Pironti put it, “keep it simple” [Pironti, 2007].

Validation of any measurement is strengthened by a num-
ber of factors that contribute to its credibility. Transparency
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Figure 6. Example security target metrics.



An Example Security Process Metric
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Figure 8. Example security remediation metrics. [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
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is one of them. Other attributes of measurement that have been
proposed to contribute to metrics validity are:

Accurate:  Data reflect the content of measurement as it
was envisioned.

Correct:  Data are collected according to specifications.

Consistent: measure is independent of measurer.

Informative:  Data provide information without addi-
tional context.

Numeric:  Data can be precisely quantified.

Ordinal: ~ Data samples can be ordered.

Replicable: Measurement repeated in same manner in
same environment will yield the same result.
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Figure 9. Example security management metrics.
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indicator of security than metrics that do not. For any given
exercise in security metrics, a systems engineer may adopt
rules for strength of validity. For example: “In order to
considered a valid metric, the underlying measure must be
numeric, unit-based, correct, time-based, and replicable.”
These rules of thumb may be adopted for both verification
and validation metrics.

For a systems engineer to find security metrics useful, the
decisions for which they are relevant must be framed by a
context in which security will serve the mission or purpose of
the system of interest [Bayuk et al. 2010]. Hence, the dimen-
sions of security measurement (target, process, activity, or
remediation) must be focused on the features of the system of
interest that constitute its security profile. This is not the same
as a Security Target, in the language of Common Ceriteria,
because the target functionality of the system of interest is not
security functionality, per se, but secure system operations,
which may require security features to be customized and
integrated with system operational capabilities.

4. SECURITY VERIFICATION AND VALIDATION

From the above discussion, it should be clear that it is possible
to use existing TTOA security target metrics in combination
with security process metrics to verify that build-to compo-
nents specifications meet and are operated in compliance with
security requirements. However, for security requirements
themselves to be validated, validity measures must be deter-
mined not only for build-to specification but for security goal
achievement. As illustrated in Figure 11, security require-
ments exist both above and below the horizontal line in the
Vee model that separates systems engineering tasks from
components engineering. We have so far discussed, and the
history of security metrics has so far been concentrated on,
verification of security requirements in build-to specifications
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Figure 11. Security metrics in the Vee Model, based on INCOSE [2011]. Adapted from Bayuk and Horowitz [2011]
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and process operation. Target and process metrics are used to
ensure that systems are configured and operated as designed.
If these metrics reveal an inconsistency between design and
implementation, activity metrics may be devised to catalogue
incidents of noncompliance, and remediation metrics may be
designed to chart progress back in line. These are all verifica-
tion metrics, and stand in contrast to metrics that would show
whether or not the system security design actually achieves
system security goals. This is the province of validation.
Though the term “valid” has been applied to metrics as an
adjective, none of the metrics discussed so far address valida-
tion that security goals are achieved.

Techniques for devising security validation tests do not
differ from validation tests for other important system fea-
tures or characteristics. For example, a Goal-Question-Metric
(GQM) approach is a common way to identify metrics that
correspond to system goals and it may productively be applied
to security [Basili, Caldiera, and Rombach, 1994]. If system
stakeholders want to know whether their goals for system
security are met, what questions would they ask to so deter-
mine? As they do not have the insight into technical or process
design, their questions would be higher level, like, “ Am I the
only one who can see my data?” These validation questions
can only be answered once the system is in operation, and
creative approaches to measurement are often required to
answer them. Nevertheless, metrics devised for validation
measures should be subject to the same standards for validity
of measurement as metrics devised for verification measures.
Thatis, in order to be considered a valid metric, the underlying
measure must be numeric, unit-based, correct, time-based,
and replicable.

Another useful tool for devising security validation tests
is Quality Function Deployment (QFD) [QFDI, 2011]. QFD
stresses quality targets, competitive analyses, and selling
features achieved through the use of cross-functional teams
from marketing, design engineering, and manufacturing to
integrate customers’ demands with the technical aspects of
the solution. Using QFD for security requires that customer
security requirements be stated positively, not as constraints,
and that security products and services have distinguishable,
thus measureable, security attributes that may be used as
validation metrics.

The primary concept to internalize when establishing se-
curity validation metrics is that how you measure security
depends on how you define security. This definition will vary
by system and stakeholder community. The question is the
same faced by every systems engineer in the course of daily
work: Did we build the right system?

5. CLOUD SYSTEM CASE STUDY

In no scenario is the difference between verification and
validation more obvious than in cloud computing. This is
because verification requires a hands-on evaluation technique
of actual implementation versus requirements, while valida-
tion corresponds to the customer perspective. Cloud services
are by nature shared. Though they may have been originally
designed with the help of a customer with special require-
ments, cloud services generally build on that initial platform
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to offer similar services to other customers who were not
involved in the design of the control environment, and also
not allowed to perform verification tests. Where customers
clearly specify goals and objectives for security to which a
cloud vendor is contractually bound, these are typically stated
with reference to a published security standard or a list of
control mechanisms attached to the contract. It is the re-
sponsibility of the cloud vendor to verify that all internal
processes that handle information have been evaluated for
compliance with customer security requirements. How-
ever, a cloud vendor may not be obligated to release that
evaluation to the customer. Even in situations where it has
been agreed that external auditors will perform audits
against customer requirements, as in the case where cus-
tomers must demonstrate due diligence in meeting regula-
tory assurance requirements, the audit does not typically
approach true security feature verification. For example,
verification requires that each TTOA undergo system
readiness tests while an auditor is generally satisfied with
evidence of process designed to accomplish TTOA security
readiness and metrics that demonstrate that the process is
followed. Even where verification testing is done by audi-
tors, they tend to use statistically valid samples of configu-
rations rather than aim for full verification. In most cases,
the only verification that cloud components are verifiably
secure is performed by cloud vendors themselves.

Validation, on the other hand, is a test of fitness for
purpose. Security validation requires that system operation
achieves enterprise security goals for prevention of harm, as
well as detection and appropriate response and recovery ac-
tivities. Security cannot be validated in test environment, and
so it can only be done once the service is in the process of
being used by a cloud customer. Of course, as in any systems
engineering endeavor, validation tests may necessarily not
completely cover all verification criteria. However, custom-
ers that have the foresight to include security features required
for their own validation testing in service contracts will be at
an advantage when attempting to perform validation tests.
These may be, for example, software change planning an-
nouncements and automated software change detection alerts,
the correlation of which would allow them to judge the extent
to which the cloud vendor controls software integrity.

Assume a cloud customer is considering storing a cus-
tomer database on a site that advertises client relationship
management software as a service. Information stored in the
cloud may be client contact information, order history, credit
line, and various reminders such as children’s names, birth-
days, and wine preferences. The cloud customer, of course,
does not want to lose control over the confidentiality, integ-
rity, or availability of the information, but also does not have
the in-house expertise to build all the features that the cloud
software already has.

A precisely stated goal for cloud security is sometimes
elusive because many stakeholders have no articulated goal
for security other than “the system should be secure.” They
provide this directive to cloud vendors via legal agreements
to secure systems to “industry standards” with the result that
cloud vendors either create, or are provided with, checklists
of accumulated security standards recommendations re-
phrased to refer to cloud security architecture components
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[Cloud Security Alliance, 2009]. Though these checklists
may form the basis for verification requirements, as they are
not composed or selected based on the requirements of the
system of interest or its stakeholders, so using them as verifi-
cation requirements does not follow best practice in systems
engineering methodology, and their use should never be con-
fused with an attempt at validation.

To apply GQM to cloud security, the stakeholder must
articulate security requirements at a level of detail wherein
they themselves can recognize when security requirements
are met. To demonstrate how to use the GQM approach to
identify security validation metrics, we formulate goals for
confidentiality, integrity, and availability, respectively. For
each, we proposed a candidate metrics based on current
industry approaches to answering the questions.

Goal: Maintain client data confidentiality.

Question:  Can others see client data?

Candidate Metric:  The time it takes a skilled penetration
test team to access client data. Longer time periods
indicate that security is better. Management estimation
of potential adversarial efforts with which to compare
the time period of the test result (and associated risk
tolerance levels) will determine the amount of time that
indicates poor security. The estimation may be supple-
mented with data from known security incidents within
the industry as recorded by penetration test team prac-
titioners [ Verizon Business, 2010].

Goal: Maintain client data integrity.

Question: s client data accurate?

Candidate Metric: ~ Survey customer cloud users to de-
termine the extent to which they find the client data
reliable via an ordinal measure from “not reliable” to
“highly reliable.”

Goal: Maintain client data availability.

Question:  Are client data always accessible?

Candidate Metric: ~ Automate continuous data access
routines and measure amount of time that client data
are inaccessible. Any inaccessibility period that ex-
ceeds service level agreements indicates a lack of secu-
rity. Shorter inaccessibility period indicate security is
better.

Some of these candidate metrics may be better security
indicators that others, and some are more difficult than others
to measure; but as a whole, they seem to scratch the surface
of the answer to the questions rather than to provide hard
validation criteria. Though they may have face-validity in
answering the question, their use in a scientific validation of
a construct theory of security is not evident. This introduces
an opportunity for QFD to supplement GQM in order to
supply some needed constructs. To apply QFD to security, it
must have a quality target based on competitive analyses, and
a description of security features that are integrated with the
technical aspects of the solution and also meet customer
demand for security. The GQM question may provide that
target, as long as the metric is positively stated. Creating a
QFD metric requires the question to be mapped to the cus-
tomer goal evaluation criteria and also to the system of
interest. For example:
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Goal: Data should be safe from theft.

Question: Can data be stolen from the cloud?

Metric: Time and effort estimates to accomplish each
branch in an attack trees scenario wherein data theft is
the goal, as in physical adversary path analysis [Hester,
2007]. Higher time and effort indicates better security.
As in the confidentiality metric using GQM above,
management estimation of potential adversarial efforts
or known incident analysis may be used for comparison
with the time and effort data gleaned from the attack
tree analysis.

Though not validated in the scientific sense, experienced
security analysts do use such metrics to gage the security
posture of a system of interest, and these are candidates for
QFD analysis because they measure technical system features
to validate that stakeholder requirements are met in a fielded
system [Garcia, 2008]. Arrott described one such possible
measure as a Work Factor Ratio (“WFR”) between “time to
protect” and “time to attack™ [A. Arrott, personal communi-
cation, 2011]. Although he did not formally publish this
theory, it may be described as follows:

e The time to protect (TTP) is the average interval be-
tween when a target is first aware of the existence of a
new threat and when it successfully deflects it. This
measure depends mainly on the speed and effectiveness
of a target’s response capability.

o The time to attack (TTA) is measured as the median
lifetime of malicious activity emanating from a specific
source. This is useful to measure in situations where
attackers must constantly create and abandon original
points to evade detection. The shorter this median life-
time, the heavier is the burden on the attacker to con-
tinuously change its location to evade detection.

e To the extent the ratio TTP/TTA is minimized, the
defenders are successfully thwarting attacks. To the
extent it increases, the attackers are more successful.
The goal of absolute security would be measured with
a TTP/TTA metric that is better as the ratio approached
0.

To measure whether the goal of preventing data theft is met
in a cloud system, the TTP may be derived from a combina-
tion of the vulnerable components that need to be compro-
mised for the data to be stolen and the existence (or not) of
security controls that compensate for the vulnerable compo-
nents. This requires modeling of attack paths and identifica-
tion of defenses in place to delay or stop each path. For
example, Figure 12 is an attack tree corresponding to the
GQM example of: “Data should be safe from theft.” Attack
trees are formulated by placing an adversary goal at the top,
and decomposing that goal into subgoals joined by “and” or
“or” branches that signify whether subgoals must all be
achieved for the higher level goal to be met, or whether there
are alternative subgoals that would independently suffice to
achieve the higher level goal. The leaves of the tree indicate
the actual adversary activity that, when combined according
to the logical constructs which dictate whether they must be
used in combination (the and gates in the diagrams), form one
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Figure 12. Attack tree for a cloud system. Adapted from Bayuk [2011].

“attack path.” Attack path 1 in Figure 12 indicates that
activities on leaves G and P set the stage for the attack path
to be utilized. The vendor network periphery must be opened
to an attacker site and the customer firewall must be hacked
in order for the exploit to occur via attack path 1.

To assign a time to attack value to the path, the length of
time that an attack is available to the attacker would be
calculated for each leaf activity. Assume that there is no
control against the vendor periphery connecting to the at-
tacker site (as would be the case if outbound Internet access
was allowed from within the vendor network, which is com-
mon). Then the time assigned to the leaf is infinity (INF). The
time to attack is then bounded only by the time an attacker
determines that there is opportunity to hack a customer fire-
wall to gain administrative access. The opportunity determi-
nation will depend on what vulnerabilities are known to exist
in firewalls in general at the time, and the prevalence of hacker
tools that efficiently execute that firewall attack. Such meas-
ures can be estimated using publicly available historical data
concerning similar attacks [Verizon Business, 2010]. As
cloud systems are subject to the same attacks as any network
on the public Internet, comparative attack data may also be
captured using the time that URLs used to distribute malicious
software and/or collect data from infected hosts are active
before they are detected by security services companies that
investigate and filter such URLs (“ web reputation services™ ).

To assign a time to protect, available corrective controls
must be reviewed. For a firewall whose rules and configura-
tions are checked daily via automated mechanisms and re-
sponse is immediate configuration correction, this attack may
be available for 1 day. For environments where firewall rules
are checked once annually by external auditors, this time
period is 1 year. For firewalls with known exploitable vulner-
abilities due to software flaws, this time period is the average
time between firewall software vulnerability announcements
and the time customers install patches. Consideration of more
detailed alternatives may prompt a systems engineer to add
levels to the attack tree in an iterative requirements process.

Where there is a single point of security failure on any one
attack path, then the time to defend is the time to correct that
situation. Assume that the control failure that allows a firewall
hack is a software vulnerability in firewall access control. In
this case, the time to fix that component includes not only the
time the firewall vendor takes to offer a patch for the compo-
nent, but also the time the cloud vendor takes to apply the
patch. Although the vendor may have signed a service level
agreement to apply patches “as soon as possible,” the ven-
dor’s historical time to repair can only be measured by moni-
toring the system in operation. If another mechanism may
compensate for that failure, but is a detection rather than a
prevention mechanism, then the time to protect is the interval
between the detection and the response that thwarts the threat.
Hence, the time to protect a given path will depend on the
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controls preventing exploit on that path, and is measured as
the minimum time required to establish compensating or
corrective controls.

If each attack path can be assigned a WFR based on the
minimum TTP/TTA for attack recovery, then for any given
cloud system C, the maximum time to protect against all
identified threats to the cloud is formulated as follows: As-
sume P, through P, are the paths on a rigorously devised
attack tree for cloud system C, and P;wgg through P, wgr are
the corresponding WEFR ratios that an attack of depth d would
take on each path. Cywgg is the longest of those minimum
values, calculated as

Cywgr =max(Py, ... P,).

The median of a cloud attack is measured using a moving
historical sample of active attacks. Trends will, of course,
change continuously, so any cloud security validation metric
based on it will have to be continuously monitored to ensure
that any validation that stakeholder expectations for security
are met evolve in conjunction with changes in the threat
environment. But, in general, assuming equivalently thor-
ough attack trees, the higher the Cypg, the stronger the
security metric. Given two cloud environments with roughly
equivalent services, a cloud with a lower WFR will be more
secure than one in which it is higher.

In this metric calculation, the time to thwart the attack is
taken as a constant. In practice, however, security best prac-
tices dictate that there be multiple controls layered on each
attack path to ensure that there is no single point of failure that
would allow attacks to be successful. This is a “defense in
depth” approach. In such cases, the WFR would not be a
single number, but an upper and lower bound. Different
combinations of controls may be compared to achieve the
longest time period as the upper bound, while minimizing the
range between the upper and lower bound.

Where redundant protective controls have been designed
into a path, the path is said to have defense in depth, and,
unless the same vulnerability applies to both controls, the TTP
for redundant controls is zero. This suggests that another
metric may be the percentage of attack paths for which the
TTP is zero due to the presence of compensating controls of
diverse technology.

6. CONCLUSION

This paper has described security metrics as typically applied
in current systems engineering activities. It has compared
such use to requirements for security verification and valida-
tion. These requirements were illustrated via a case study.
We conclude that state-of-the-art security metrics are ade-
quate for security verification because verification only re-
quires that requirements for build-to components are met.
However, as currently applied, these are blanket requirements
for every system component and often do not get the scrutiny
that should correspond to component criticality in a given
system of interest. Even if they were artfully applied, they
would still not meet requirements for security validation.
Security validation metrics are less mature and by nature
will emerge as unique for each system of interest. However,
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systems of similar architecture patterns should have enough
similar stakeholder expectations to make even validation
measures reusable to some extent. The primary points to keep
in mind when establishing security validation metrics are:

e How you measure security depends on how you define
it.
The definition must include the context of operations.
The context of operations includes the threat environ-
ment.

The security overlay for the Vee model equips a systems
engineer to construct a theory of security for a given system
of interest that can be tested for validity. This theoretical
construct focuses on system security validation and so is
comprehensible to executive decision-makers faced with
trade-space decisions that affect system security. That is,
where security requirements are integrated into the systems
engineering process, resulting measures of system security
validity are both construct and face valid.

The goal of this work is to dispel the belief that compliance
with security standards provides assurance that system secu-
rity goals are met. It does not make today’s certification and
accreditation programs obsolete, but it should raise awareness
within the engineering profession of the relative contribution
of standards compliance in the context of system security
goals and objectives. Future research in this area may be
expected to ultimately result in a pattern catalogue of systems
security models suitable for a given type of system of interest
[Jones and Horowitz, 2012]. This catalogue would not com-
pete with security standards, but provide an alternative view
on system security requirements that would enhance stake-
holder appreciation for systemic security features.
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