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PREFACE

The comparison of Philosophy and Artificial Intelligence (Al) has often

effected discovery of theoretical parallels. As John McCarthy observed:

Philosophy has a more direct relation to Artificial Intelligence than it
has to other sciences. Both subjects require the formalization of
common sense knowledge and repair of its deficiencies. [28]

The following thesis attempts to strengthen such paraliels. The connections between
contemporary Philosophy of Mind and research in Artificial Intelligence are not
restricted to knowledge representations such as predicate logic. Indeed, there exist
strong similaritites between Al's problem-solving formalisms and Philosophy's
conceptual structures. Genuine understanding of these similaritites is contingent upon
genuine understanding of both types of theoretical entity.  This paper provides an
introduction to research in both Philosophy and Artificial Intelligence. It concentrates
on those aspects of each domain which contribute to an understanding of their

theoretical parallels.

e Chapter One is an introduction to Artificial Intelligence.
¢ Chapter Two is an introduction to knowledge representation schemes.

e Chapter Three is an indepth analysis of the most successful type of Al
programs: expert systems.

e Chapter four is an attempt to formalize the philosophical attribution of
intelligence.

e Chapter five presents the conclusions of this thesis.






CHAPTER 1

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

1.1. Al Applications

The following scenario depicts the current state of technology in Artificial

Intelligence:

Carol was running late for work. Of course this was the morning
her company car did not start. After several unsuccessful attempts, she

called Tracy, the company mechanic.
"What did FAE say?" asked Tracy.

HFAE?II

"Ford Automobile Expert, it's on the right side of the dash.'
Tracy seemed impatient. "Go run the program and call back if it's

something you can't fix." Tracy hung up.

Carol stared at the phone for a minute. Then she went back to the
car. She was mildly surprised to find that the flip side of the glove

box was a keypad. Inside was FAE, who asked

WHAT TYPE OF CAR PROBLEM DO YOU HAVE?



On the screen was a list.

1. CAR WONT START
2. FLAT TIRE
3. OTHER CAR PROBLEM

Carol pressed '1' on the keyboard.

SIMPLE CHECKS:

HEADLIGHTS ARE DIM

FUEL FILTER CLOGGED

BATTERY CABLES LOOSE/CORRODED
NONE OF THE ABOVE

HWN =

This cenfused Carol. Not knowing what else to do, she typed,

"Where is the fuel filter?" FAE responded with a diagram of the engine.

FOLLOW THE HOSE FROM THE CARBURETOR TO A BROWN DISK.
SEE IF ANY GAS CAN GET THROUGH.

""What do | look 1like, a mechanic?" But Carol easily completed the

simple checks and answered ‘none of the above'.

STARTER DATA:
1. NO CRANKING

2. SLOW CRANKING
3. NORMAL CRANKING
4. GRINDING NOISE FROM STARTER
Carol hoped all the rest of the questions were this easy. She typed

i 31 .
GAS GAUGE READS EMPTY?

"I am not stupid.'" Carol typed. She wondered what she why she felt

insulted by a car.

I ASSUME THAT MEANS NO. TYPE 'FIX' TO CHANGE YOUR
1
ANSWER.

ODOR OF GASOLINE IN CAR:

Actually a computer can not yet understand what Carol meant by her remark. However, it can be

programmed to recognize negatives.
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1. NONE
2. NORMAL
3. VERY STRONG

The car did seem to smell like gas and Carol typed '3'.
OUTDOOR TEMPERATURE IN DEGREES FARENHEIGHT:

I't was getting hot in that car. Carol guessed it must be at least 75.

INTERPRETIVE ANALYSIS
DIAGNOSTIC STATUS :
CAR FLOODED
TREATMENT RECCOMMENDATIONS:
WAIT TEN MINUTES OR DEPRESS ACCELERATOR
TO THE FLOOR WHILE STARTING
Ten minutes later, Carol was on her way to work.

The general model for an automobile mechanic program was developed at
Rutgers merely to illustrate to students the use of EXPERT, a too! for the design of
expert systems. Extensively used expert systems include: PUFF, which performs
pulmonary  function tests; R1, which determines correct VAX computer
configurations; DENDRAL, which infers the molecular structure of unknown chemical
compounds; MACSYMA, which performs symbolic integration; and a Serum Protein
Diagnostic program which interprets serum protein electrophoresis tests. [47, p.2]
Expert systems are the most successful Al programs developed so far, but current
research in Al includes speech understanding programs, visual information processors
and robotics. All Al programs are similar in that success depends on a good

organizational structure of the knowledge base. [35, p. 365]



1.2. State Space Representations

In storing information, program designers must make a distinction between the
representation of facts (true rules and propositions about the problem domain) and
the use of rules for manipulating information to produce a solution. This distinction
is reflected in the customary characterization of programmable problems as state

space representations. A problem state is designated as four sets:

1. A set of all possible configurations of all relevant variable components
of the problem domain. Call it Z.

2. A set of rules of the form: IF A THEN B, where A is a member of Z,
and B is a different member of I

3. A subset of Z containing those states from which it possible to initiate
problem solving activity. These are called initial states.

4. A subset of I containing those states which define a solution to the
problem. These are called goa/ states.

Problem solving may be viewed as a search which starts at one of the initial
states. Rules whose left-hand-side match the initial state are used to generate
successor states. A heuristic evaluation function may be used to evaluate each
successor state and indicate which are most likely to lead to a problem solution.
Those states with the highest probability of generating a goal state are expanded to
produce a new set of successors. The process is repeated until either a goal is
generated or the set of successor states do not match the left-hand—-side of any
rules. In the state space representation of figure 1-1, there are three rules which
have the designated initial state on the left-hand-side. Of the three successor
states, two are evaluated by the heuristic function as being close to a solution.
These are then expanded according to applicable rules and the heuristic function is

used to evaluate their successors.
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Figure 1-1: A State Space Representation of a Computable Problem

This process ends at the third generation when a goal state is generated.v The
reasoning process which led to the solution is documented as the series of rules
which lead to the goal state. When the current set of successors cannot be
expanded with the given set of rules, the search fails and the problem remains
unsolved. Much of the pioneer work in Artificial Intelligence was concentrated on
search methods. Recently, however, attention has turned to the organization of

state spaces in order to maximize the efficiency of the search. [30, p. 65]



1.3. Can Computers Be Intelligent?

Because the majority of problems which humans face daily cannot at present
be stated so formally, one may intuitively conclude that computers cannot be said to
know or to be intelligent. Philosophers as well as computer scientists are prone
to the use of hypothetical examples designed to capture the intuition and extend its
aura of certainty to every instance of machine problem solving. However, | find
that actual research in computer science easily affords a basis for discussion of the
possibility of machine intelligence. One example could be SHRDLU. SHRDLU is a
program which simulates the conversation of a hypothetical robot. This robot is
designed to manipulate a finite set of boxes. SHRDLU internally represents a
formation of boxes (see figure 1-2). It can answer questions about the relations
between them (ie."ls the small green box under the big red box?"). It can change
its internal representation as if it had moved some boxes (ie. "Put the red box on
top of the blue box” "OK". SHRDLU has some very obvious limitations. [5, p.
122-23] It cannot accept ungrammatical input. It produces very rigid responses. It
is not capable of hypothetical or analogical reasoning. However, if one takes
information to be the mental representation of justifiable propositions, then SHRDLU
can truly be said to possess information about it limited domain. SHRDLU's
reasoning processes are linguistic and deductive; it can derive information concerning
the relations between the blocks. This ablilty to take in information, reason with it
and produce information based on it indicates that SHRDLU wnderstands the block
world. [3, p. 22] It is through discussion of such research and not through
discusion of hypothetical programs that we discover the problems involved in

constructing computer intelligence.



slise

e

{4(,31‘~”3J
/

7 L

b]?-’(ﬁ

Figure 1-2:  An example of SHRDLU's biocks world

Thougﬁ SHRDLU makes a strong case for the existence of computer
understanding, one may still maintain that computers will never be intelligent because
they lack some elusive 'analogue’ attributes or because they understand only very
limited domains. [13] It becomes necessary to look beyond the point which
SHRDLU proves about computer understanding to questions about how humans
understand the external world. Davidson maintains that one cannot attribute human
qualities to a machine unless that machine shares our perspective on the information
we have in common. [8, p. 345] A strong supporter of research in Artifiéia|
Intelligence may maintain not only that an appropriate program will enable a
computer to wunderstand things, but also that the program will serve as a
explanation of human understanding. [37, p. 282-83] But what sort of explanation
/s a computer program? One way to view a program as an explanation of
understanding (perhaps vou can think of others) is to adopt the view that the ability

to consistently perform operations on a variety of symbols constitutes
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understanding. This argument is supported by the fact that systems which lack this
ability are unable to identify or affect symbols in a proscribed manner; and this
intuitively constitutes confusion. However, conclusions concerning

computer

intelligence must be subject to standards stricter than intuition.
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CHAPTER 2

KNOWLEDGE

2.1. The storage of information

One safe assumption concerning knowledge is that it has something to do
with facts, or with information conceived as true representations of facts. To
communicate knowledge is simply to communicate information. But this does not
immediately imply the identity of the two concepts. It merely opens an avenue of
study through which one may proceed to the goal of characterizin.g what it is to
know. A computer represents information in the form of bits. Bits are instantiated
by electronic circuits whose voltage levels are ascribe one of two values, zero or
one. Combinations of bits may be conceived as strings of zeros and ones; they are

binary representations of machine instructions and data. Instructions of the type:
00010000001110100000000011111111

are typical of machines /anguages. They may be entered directly into the memory of
a computer and will immediately be executed by the machine's hardware. Hardware
denotes integrated circuits, printed circuit boards and the rest of the physical
components of the machine. It is so called in opposition to software. Software
denotes abstract problem-solving strategies or programs which are representable in
a variety of forms, such as punched cards, tapes and discs. It consists of

sequences of high level instructions, such as:
IF (statement1 = true) THEN (statement2 = true)
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However, all software must be either translated or interpreted into the machine's
binary code before it can be executed by the machine's hardware. It is theoretically
possible tc implement such instructions directly in the hardware, but their variety
renders such an attempt both costly an inefficient Nevertheless, the distinction
between a machine's hardware and its software is simply a matter of translation or
interpretation. The software directly represents causal interrelations in the machine's
hardware. It is often refered to as a virtual machine whose machine language is
the set of high level instructions of which the program is composed. Tannenbaum
observes that a machine's hardware and its software are logically equivalent. [44,
p. 11] They represent two different prespectives through which to view the

machine, reminiscent of Spinoza's distinction between thought and extension.

The fuzzy distinction between hardware and software presents an obvious
analogy for the human brain. Stephen Kossylyn argues that the construction of a
computer has influenced intuitions on theories of self, and philcsophy of mind has
suffered in the process [23] It is true that the general term
information-processing-system has blurred the distinction between information
stored in a computer and information stored in the human brain. For many, the
distinction is in the circuitry which aquires and synthesizes the information. As
Dreyfus observes, "Programmers rush in where philosophers..fear to tread” [13, p.
183] Ever more sophisticated technological breakthroughs in computer hardware
have pragmatically optimistic computer scientists analyzing human problem soiving

activity in the hope of mapping those procedures into computer programs.
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2.2. Knowledge Representation

One universally agreed upon fact among researchers in artificial intelligence is
that intelligent problem-solving activity requires large amounts of knowledge about
the problem domain. [35, p5] Thus, the level of intelligence attributable to a
computer will always be constrained by the amount of problem relevant information
representable by the system. This is referred to in computer science literature as
The Knowledge Representation Problem. Attempts to deal with this problem are

many and varied. | will describe two: frames and scripts.

A frame is an information-storing structure which represents answers to
common questions about a hypothetical stereotypical situation. [29, p. 109] For
example, a frame designed to represen‘; a classroom situation may look like figure
2-1. The slots may be filled with frames which represent availble information about
a certain construct or they may be filled with default values when no information is
available.  For instance, the teacher and blackboard slots may be filled with the
frames in figure 2-2, and these may be filled with other frames or with default

values when the data is unavailable.

! .
TEACHER DESKS | BLACKBOARD

STUDENTS NOTES AUDI-VISUALS

Figure 2-1: Frame Representation of a Classroom Situation

A control strategy designed to fill the empty slots may search for or request

information necessary to fill a certain frame.
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PERSON NUMBER SIDE-OF-ROOM?
KNOWLEDGE-BASE DUSTY? ‘FRONT-0OF -ROOM?
ANTMATED? CHALK , BACK-OF -ROOM?

Figure 2-2: Frame Representation of a Teacher and Blackboard Constructs

A script may be conceived as a highly specialized frame. It represents
patterns of causal relationships which occur in a specified sequence of events.
Scripts serve to provide assumptions concerning such sequences, to provide
information concerning the relations between events and to focus attention on
unusual events. The paradigm example is of a script which represents a visit to a

restaurant. [35, p.234-37] Given only the statement:
S went to a restaurant, had a hamburger and left.

a restaurant script would enable a computer program to answer a wide variety of
questions including:

e Did S sit down?

e Did S eat?

e Did S talk to the waitress?

e Did S pay his check?

Frames and scripts have both been labeled as dec/arative representations of
knowledge. This reference is in contrast to a procedural knowledge representation,
which entails fewer straightforward facts and more procedures to manipulate them.
SHRDLU, for example, represents the blocks world with the same procedures it
uses to manipulate the blocks. [35, p.240] However, no system can employ either
declarative or procedural representation to the exclusion of the other, and there is

no clearcut boundary between the two types of representation.
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2.3. Epistemology

Information storage and processing methods are of much concern to modern
epistemology.  Traditional attempts at defining knowledge have concentrated on
identifying necessary and sufficient conditions for what it is to know. In generat,

these conditions have been of the form: [17, p.35]

S knows that P if and only if

1 P is true

2. S believes that P
3

S is justified in believing that P
Traditionally, justified true belief has meant "having the right to be sure”, or
something very similar. [2] Edmur‘wd Gettier argues that justified true belief is not
an adequate characterization of knowledge because he is able to formulate

counterexamples which refute any such claim. For instance: [17, p.36-37]
Suppose that Smith and Jones have applied for a certain job. And
suppose that Smith has strong evidence for the following conjunctive
proposition:

e (d) Jones is the man who will get the job, and Jones has ten
coins in his pocket.

Smith's evidence for (dj might be that the president of the company
assured him that Jones in the end would be selected, and that he, Smith,
had counted the coins in Jones' pocket ten minutes ago. Proposition (d)
entails: '

e (e} The man who will get the job has ten coins in his pocket.

Let us suppose that Smith sees the entaiiment from (d) to (e), and
accepts (e) on the grounds of (d), for which he has strong evidence. In
this case, Smith is clearly justified in believing that (e) is true.

But imagine, further, that unknown to Smith, he himself, not Jones, wil
get the job. And, also, unknown to Smith, he himself has ten coins in his
pocket.

The conclusion is that Smith is justified in believing that statement (e) is true, but he

does not know it.
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Though Gettier's arguments are valid for the traditional analysis of justification,
justified true belief is not an inherently inadequate characterization of knowledge.
The issue which prevents its acceptance is one of standards for justification. One
justification which avoids Gettier's dilemma is proposed by Fred | Dretske. His

characterization of knowledge is based on empirical facts concerning the

communication of information.

To understand Dretske's theory, one must be able to view information in
quanitative form. The amount of information generated at a source is measured as
differentiations are made between two competing alternatives. in Dretske's example,
one of eight employees has been norﬁinated for a special task. The information
whose content specifies the nominee (assuming each employee has an equal

probability of being chosen) requires three differentiations:

1. The nominee belongs to one of two groups of four.

2. Of that group, he/she belongs to one of two sets of two employees.

3. The nominee is one of the two in that set.
The amount of information involved in specifying the nominee is thus three bits.
Each bit will be a one or a zero, to signify the result of one differentiation. In
general, the amount of information at a source is the logorithm in base two of the
number of competing alternatives. [12, p.5] Were'there 16 employees to choose
from, the amount of information embodied in the specification of the nominee
would have been 4 bits. In Dretske's account of communication theory, a source of
information usually carries some degree of equivocation. The larger the number of
competing alternatives, the larger the equivocation, the larger the value of

information gensrated. [12, p. 62] The amount of information generated, however,
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is not necessarily proportional to the amount of information transmitted. Were | to
inform you which of the eight employees were chosen, | would relay the amount of
information generated minus the eqguivocation at the source. There would no longer
be any alternatives to consider. However, | must communicate that information by
some method. | may write the information on a piece of paper, send you a
message at your computer terminal, phone you, or even relay it by Morse code. In
any case, your receipt of that information may be affected by the communication
medium. Dretske calls information you receive that is not generated by the source

noise. Possible scenarios in the communication of information are depicted in figure

2-3.

This account of information need not be as exacting as its presentation
implies. Dretske does not attempt to define information, merely to characterize it in
terms of its alternatives. To calculate an amount of information, one must list the
alternative possibilities, the probabilities associated with each alternative and the
conditional probabilities among the alternatives. For most situations, this is not
possible. Yet neither is it necessary. The amount of information generated at a
source depends on the related probabilities which exist, not upon those which we
can independently verify. [12, p.56] Information is factual. Its receipt depends on
its content relative to the receiver's prior evaluation of alternatives. For instance, if
you know that none of the four employees in the first group chosen were chosen,
then your require just two bits of information to identify the nominee; whereas

someone else may need three bits to receive the same information.

By now, it may be clear how Dretske is able to use this characterization of

information to characterize knowledge. Information by definition carries truth.
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B.
C.
D.
[12, p.16-18]

€

Figure 2-3:

Is = information at source
information recieved

amount of information recieved
from information at source

lr =
Isr =

information
information
information

perfect communication of
partial
lack of communication of

communication of

h g;;l‘/haf{@’\

The Flow of Information

Therefore, a person may know that my name

name

Jennifer. [12, p. 86] An example clearly iliustrates Dretske's thesis:

is Jennifer is causally sustained by

is Jennifer if his/her belief that my
the /nformation that my name is

Martin may be

caused to believe that the door is open without receiving the information that the

door is open, but upon receipt of the information that the door is open (eg.,

looking at the open door), his belief is sustained, and he knows the door is open.



19

Though this analysis of knowledge clearly answers Gettier, the skeptical
response to it cannot be brushed aside. A skeptic will focus on the channel of
communication between source and receiver and conclude that it cannot be assumed
to function properly enough to guarantee the accurate tranmission of information. |
do not here refer to the noise which results from the communication of
information. For information of this type is redundant from the point of view of
the reciever. The channel to which the skeptic objects is a telephone wire or a
person’'s vision: a channel must function as a fixed framework which admits of no
relevant alternative states. [12, p.123] If relevant alternative states are known to
exist, we must eliminate them through proper testing and monitering. To say that all
communication channels are inadequate is to say that all communication is impossible.
It remains with the skeptic to prove that an accepted channel is creating

misinformation. [12, p.131]

Still a third argument may state that a receiver is not capable of processing
all the information that is transmitted. This assertion is accepted by Dretske,
provided the specified signal is transmitted in analogue form. A signal in analogue
form will always contain more determinite information about its source than is
possible to process. For to process information, one must extract the information
from the signal and identify the source. This digitalization process allows us to
recognize two sources as being essentially similar. [12, p.141] That is, to
accomplish the attribution of identity to external objects. The analogue—to—digital
conversion typical of information processing activity constitutes cognition, or
knowledge aquisition. The conversion may be from a visual image to a familiar face

or from a pressure gauge to a numerical measurement. There is always more
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information available at the source than it is possible for a system to abstract and

catagorize. [12, p.153]

2.4. Conceptual Structures

A source of information may be any object of perception. What qualifies as
the object of a perception is the most specific piece of information generated at
the source. Informational relationships between an object of experience and its
causal antecedents or constant corrollaries are detefmined by the cognitive capacities
of the information processor. For instance, we perceive a docrbell ringing, but we
do not perceive a finger on the button. The relationship between a finger on the
button and a doorbell ringing is embodied in conceptual structures which have been
formed through cognition. We may thus /earn about interrelationships between
sources of information, but a causally sustained belief that the bell is ringing does
not qualify as knowledge that someone is at the door unless the relevant semantic
structure admits of this relationship. The content of a belief is a mere digitalized
representation of information, while a conceptual structure may be viewed as a

cluster of interrelated beliefs.

Once constructed, a conceptual structure is used to process information. Its
meaning derives from the type of information which led to its development. lts
function is to classify perceptual tokens of the same type. Dretske claims that all
learning progresses in this manner. In attempting to teach a concept, we endeavor
to accurately transmit the information embodied in it in hope that the pupil will form
a similar conceptual structure. [12, p.195] Once the structure has been formed, its
causal origin is lost, for subsequent tokens may arrive in a variety of different

situations.  This flexibility inherent in conceptual structures may allow for some
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inaccurate classifications.  Tokens may be identified as a type exclusive to a
particular conceptual structure despite its lack of genuine information to that effect

False beliefs are the result of such false categorization. [12, p.1893]

2.5. Perceptual Mechanisms

Dretske's theory on conceptual structures has strong support from theoretical
psychology.  Contemporary research has demonstrated that the brain temporarily
stores sensory input in the form of an icon. Because these last for such a short
time (250 milliseconds), brief glances would produce no visual image if a person did
not have preconstructed models of innumerable visual images. Such mental models
are called schema. [42, p27] Schema are formed from mental models of smaller
dimensions called percepts. Psychologists have identified various perceptual
mechanisms in the brain whose function is to store and retrieve information in the
form of schema (see figure 2-4). The associative comparator retrieves stored
percepts which best match all or part of a perception, or icon. It has the ability to
attribute identity to external objects. [42, p.31] Another type of perceptual
mechanism is an assembler. It combines the recalled percepts into a schema.
Familiar images will not require the use of primitive percepts, since a corresponding
schema may already exists in the brain. Unfamiliar images will require repeated eye
movements or other motor mechanisms working in cooperation with the assembler
to establish the correctness of the complsted model. [42, p.32] Correctness of
the model will vary with the amount of attention paid to specific areas of the

object of perception.

Analysis of complex behavior, such as chess playing, demonstrates the need

for schema which organize fundamental percepts into recallable patterns. [42, p.44]
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STOCK OF AVAILBLE PERCEPTS

MOTOR ASSOCIATIVE
MECHAN | SMS ASSEMBLERL——— % 7 COMPARATOR
WORK ING
MODEL ¢

SENSORY | CONS

N \
CRONORORA
SENSORY [INPUT

Figure 2-4: Mechanisms of Perception
[42]

Several studies have shown that, while a novice chessplayer must analyze the board
to determine the correct move, a chess master need only glance at it. The master
recognizes a greater variety of patterns and can assemble patterns more quickly.
Furthermore, internally generated images have the same nature as sensory icons and

thus may be reinterpreted by the same perceptual mechanism. [42, p.61]

It is interesting from the point of view of this thesis that the assembler and
the associative comparator operate totally independently in the brain. The biological
disruption of one mechanism has n-o effect on the performance of the other. [42,
p.33] Such is also the case with the storage and retrieval procedures in a

computer program.
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CHAPTER 3

EXPERT SYSTEMS

3.1. Knowledge Engineering

Many projects now classified as expert systems began as basic research in
knowledge representation. They evolved into realistic schemes for prcbiem
solving. [47, p.157] No one will disagree that 2 person whom we call an expert is
one to whom we would attribute intelligence. An expert is a person whose
extensive experience and specialized knowledge renders him a source of information
which no textbook could ever capture. The phenomenon of human expertise
amounts tc procedures for applying knowledge to practical situations. A distinctive
attribute of expert reasoning is the ability to use available facts about a problem to
narrow the scope of possible solutions. [47, p.3] It is rarely easy for an expert
to document personal methods of solving problems in the domain of speciaiization.
But with the help of an expert system designer, or know/edge engineer, it is
possible for an expert to formulate well-defined rules and programmable techniques
which allow computers to serve as intelligent assistants and advisors in fields where

human experts are scarce.

An expert system is a computer program which meets the following general
specifications: [47, p.6]

1. The problem solutions or advice are enumerable.
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2. There exists a reliable method of collecting data about the problem.
3. It is assumed that we deal with a limited domain.

4. There exists logical or probablistic rule—based knowledge which is
capable of linking data to conclusions.

5. There exists a reasoning control strategy capable of accepting
information from the user, asking questions of the user to supplement
the knowledge base, and explaining reasoning processes when asked.

Though it is an extremely difficult task for the knowledgé engineer to aquire the
knowledge necessary for encoding rules from the expert, the manner in which to
encode those rules presents an even more difficult set of problems. The
constraints imposed by computer representation of knowledge involve a tradeoff
between the power required to accurately express expert knowledge and the
simplicity required to explain, update and describe the knowledge represented. [47,
p.12] Power here denotes reasoning techniques; they are seen by knowledge
engineers as independent of the knowledge required to solve the problem.
Reasoning methods may consists of interrelated subproblems, such as the

foliowing: [47, p. 18]

1. Given a pattern of evidence, infer possible diagnoses and degree of
certainty possible for each.

2. Given the same pattern, deduce what other types of evidence would
strengthen a particular diagnosis.

3. Given a tentative diagnosis, account for unexpected or incompatible
evidence.

:P.:

Given a tentative diagnosis, form a conclusive one.
5. Given a conclusive diagnosis, choose the appropriate action.

6. Given conclusions and reccommendations, explain the reasoning process
which led to their choice.
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3.2. Rule Formation

Rules derived from experts may be deductive, inductive or simply unspecified
associations. They may link evidence to other evidence, evidence to hypothesis,
hypotheses to other hypotheses, or even combinations of evidence and hypotheses
to further hypotheses. Rules are most often of the form: IF A THEN B. They are
called production rules. But other types have been developed. John Kastner's
precedence rules enable a knowledge engineer to present the logical structure of
his program in a form which is easily understood and corrected by an expert. [22]
A precedence rule may represent, and thus replace, numerous production Tules with
a matrix which can be presented to the expert in the form of a chart Kastner's
examples are in therapy planning. He listed all possible treatments for a diagosed
disease in order of their efficacy as a cure. Specifically, drugs known to bé

effective against disease 'X' may be listed as follows:
DRUG A < DRUGB < DRUG C < DRUGD

'<" means /s more effective than'. Kastner also listed the contraindications
associated with each drug; that is, the reasons why a drug should not be used for a
particular patient. These two lists form the columns and rows of a matrix. For
each drug, the relevance of a contraindication is represented in the matrix as a
boolean value (see Figure 3—1). To determined which therapy is best for a patient,

his individual findings are presented in the same matix format (see Figure 3-2).

A true value in the patient matrix for a certain drug-contraindication
combination prompts a reordering of the drug list The contraindicated drug is
moved to the end of the precedence list In this example, the patient is mildly
allergic to DRUG D, but DRUG D is already on the end of the list, so no reordering

is required. The next contraindications then are evaluated. Because the patient is
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contraindications/DRUGS most effective <<< least effective
DRUG A DRUG B DRUG C DRUG D

pregnancy Fr F F T
resistance T T T T
severe allergy T T T T
mild allergy T T T T

Table 3-1: Simpl/ified Representation of a Precedence
Rule

[22, p.38]

contraindications/DRUGS most effective <<< least effective
DRUG A DRUG B DRUG C DRUG D

pregnancy F F F F
resistance F T F F
severe allergy T F T F
mild allergy F F F T

Table 3-2: Example of patient data represented in precedence rule chart

severly allergic to both DRUGS A and C, they are moved to the end of the list in

the order in which they are evaluated. The new list looks like this:
DRUGB < DRUGD < DRUG A < DRUGC

Further evaiuation shows that the patient is resistent to DRUG B and a new list is

formed:
DRUGD < DRUGA < DRUGC < DRUGB

No more contraindications are indicated, so the precedence rule has determined that
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DRUG D is the best available treatment for this case. Graphic problem space
representations of this nature allow a knowledge engineer to discusé his system
model with the expert in non-technical language. Moreovef, precedence rules are
more concise than production rules. They are more easily modified as new

variables are discovered in the problem space.

Refinement of a system model is usually accomplished by following an expert
around for few days or weeks - observing his behavior and asking questions. The
knowledge engineer may start with a few simple problem instances and revise his
program to account for an increasing variety of cases. An alternative to this case—
by—case approach to rule formulation has been developed by GA. Drastel and CA.
Kulikowski. [11] Their system starts with textbook representations of the problem
space and generates rules based upon taxonomic, causal, and strictly relational links
between a specific set of findings and thair corresponding physical states. Drastel
and Kulikowski view rule formation as a pattern recognition process. All data
associated with a certain physical state is placed at the left-hand-side of a
conditional statement and the identifier for that state is placed on the right. It is
determined which physical states necessarily imply the existence of another and this
data is combined with the antecedents for the state implied. This system may also
search for evidence which will strengthen the validity of a given rule. Drastel and
Kulikowski assert that rules derived in this manner are more likely to correctly
classify new cases and will be more easily understood by the expert once he is

drafted into the mode! building process. [11, p.1]

A major limitation of these 'generate and test methods of rule formulation is

that people other than the original knowledge engineer find it difficult to understand
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the conceptual model up‘on which a program is based. William Clancy criticizes such
programs because a problem solving strategy and a probiem classification are often
embedded in the same rule. [7] To trace and modify such rules is not an easy task.
Clancy asserts that a domain—independent problem—solving strategy is a prerequisite
for an easily understood and modified system. One such system is EXPERT (see
page 5). EXPERT is a multipurpose framework for designing expert systems. As
Clancy asserts, the existence of this type of system has rendered rule modification
an easy task. A program called SEEK has been written which compares the
conclusions of an expert system written with EXPERT. to a controlied data base of
Cases and rates the system's performance. [31] The cases are then analyzed in an
attempt to improve that performance. Rules utilized in drawing conclusions are
listed for each case. When the program’s conclusion is not the same as that of an
expert, SEEK has two alternatives. It may search for a rule which is close to being
satisfied for the case, and which would, if satisfied, enable the correct conclusion
to be derived Then SEEK may reccommend to the EXPERT user that the rule be
generalized in order to override the currently dominant conclusion. SEEK's other
alternative is to suggest that specifications be added to make the currently accepted
conclusion less dominant in all cases. An EXPERT user may experiment with
changes without affecting the original program. An extension of SEEK. SEEK Il is

capable of refining rules based on experience without interaction with a user. [20]

Continual modification is a necessary feature of expert systems development
because human experts are not consistently conscicus of their reasons for making
decisions. For example, probability measures reported by experts rarely turn out to

be accurate when conditional probabilities and actual problem solutions are taken into
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account. Schemes which weight evidence numerically render it difficult to explain
and correct erronecus conclusions. Many expert systems designers cite these and
cther reasons for avoiding significant use of strict /ikel/ihood measures. [47 ,pp.
28-38] However, the use of weighted confidence measures often serves to give
a more concise representation of expert knowledge. They range from -1 (= no
confidence) to +1 (= absolute confidence). They are sometimes called bel/ief
measures. The expert system MYCIN, for example, associates two belief measures
with every assertion it considers: a measure of belief (MB} and a measure of
disbelief (MD). Both MB and MD are represented by numbers between one and
zero. Each MB/MD pair generates a certainty factor (CF) for a given assertion
where CF = MB - MD. Mulﬁple sources of information concerning the probability
of one assertion are combined so that some proportion of smaller CFs are added
to the largest to produce a certainty factor larger than that of any individual CF in
the set [35, p.184] However, Weiss and Kuiikowski perceive dangers inherent in
weighted mathematical scoring. The only belief measure which they will attribute to
an assertion is only as large as the smallest weighted evidence or hypothesis that

led to its consideration. [47, p. 96]

3.3. Control Strategies

Once rules and other relevant information have been identified, their
implementation requires the design of a control strategy suited to the problem at
hand. Our paradigm problem solver, heuristic search (see page 6), was an example

. 2
of a data driven control strategy.” Rules are activated if and when their left—hand-

2
Synonyms for data driven control are bottom—uip, forward chaining, pattern—directed, or antecedent

reasoning.
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side conditions are satisfied. A data driven control strategy may apply rules as they
become activated, or maintain an ordered list of activated rules so as to apply them
in the most efficient manner possible. A second type of control strategy is goa/
d,riven.3 This strategy is to examine all rules whose right—hand-side correspond to
the desired goal until it compiles a set of true statements which may represent an
initial state. Like the data driven control strategy, a goal driven control strategy may
apply rules as they become activated, or maintain an ordered list of activated rules

so as to apply them in the most efficient manner possibie.

Both data driven control and goal driven control are advantageous for some
types of problem but disadvantageous for others. Iin a situation where there are
many possible findings, but few possible conclusions, a data driven control strategy
may be appropriate (see figure 3—1A). In the opposite case, a goal driven strategy
may be appropriate (see figure 3-1B). However, it is often desirable to use some
combination of these two strategies in order to maximaze the efficiency of the
problem solving procedure (see figure 3—1C). PROSPECTOR, for example, alternates
between the two strategies. [14, p.23] It uses partial conclusions of its data
driven phase to select a goal for its goal driven phase. The object is to converge
on a rule which forms a link between the path from the initial state and the path

from the goal state.

Yet another type of control stategy is the b/ackboard approach. A
blackboard is a representation of the problem space itself. Each rule monitors a

particular section of the problem space. It is applied when its antecedent appears

Synonyms for goal driven control are top—down, backward chaining and consequent reascning.
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c.

Figure 3-1:  Control Strategies

in that section. [26, p.212] Its function may be to deposit information on the
blackboard, to ask for input, or to produce output. As information is deposited on
the blackboard, more rules are activated  The process continues until a goal is

found, or the board becomes empty.

Data input to an expert system must be specified as true, false, numerical,
unavailable, character strings, or as any specific type.  Though hatural language
interfaces may be desirable in the presenting conclusions or explaining advice,
possible errors in interpretation render it inadvisable to use as system input. For
even in processing specified data, the system may not be provided with sufficient
evidence to satisfy the antecedent of any rules. Two methods of dealing with this

situation are calling subroutines to infer new evidence from existing data or asking
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questions of the user to supplement the knowledge base. [47, p.84] It is desirable
to use the first method first, in order to reduce the number of questions that must

eventually be asked before a conclusicn is reached.

One may object to the attribution of the title "expert’ to a computer system
because a machine lacks the categorical understanding which comes with long years
of experience in a given domain. However, the basis for this objection is unclear at
best, for it has been found that human experts can rarely document their reasoning
processes, often resorting to after—the—fact justifications rather than coherent
explanations. [24, p. 53] In addition, it has been found that expert judgement is
highly dependent on the ability to recognise and. match patterns of findings and
hypotheses at a level of abstraction suited to a specific problem. The fact that
most successful expert programs to date have relied heavily on a strict rule—based
approach reflects the fact that they have all been analysis problems. But moderately
successful expert systems exist for synthesis problems such as planning, fault
repair, design and chemical synthesis. They also exist as interface programs for
providing advice on the use of a complex system [14, p.36] Future applications
of expert systems may include localization problems. [18] They may even include

problems of theory formation in indeterminite domains. [19]

This classic expert system paradigm is already undergoing change as
knowledge engineers discover wider applications for automated expert advice.
Models now exists which receive data not only from a single user, but from other
computer programs. This makes it possible for expert systems to read data directly
from complex measurement instruments and to analyze data immediately as it

becomes available. These systems, not only suggest advice to the user, but also
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monitor the user's actions. These actions may result in changed circumstances
which provide the basis for new analysis of the constantly available data. Such a

system can provide three types of advice: [47, p. 132]

1. Provide an interpretation of existing evidence and past action.
2. Offer advice on future action.

3. Check to ensure that current conclusions and actions are consistent
with current available evidence.

Moreover, it is feasible that expert systems will aquire even more intelligent
capabilities as progress is made in robotics, visual information processing, and

machine iearning.



34



35

CHAPTER 4

INTELLIGENCE

4.1. The Mind-Body Problem

It is evident from our introductory example that conversation with an expert
system is not nearly fluent enough to merit attributions of personhood. Yet, it is
not science fiction, but informed speculaiion, to venture that mechanical and
perceptual interfaces may make expert systems capable of understanding significant
portions of their environment. For a hypothetical, but not a farfetched example, a
robot may be designed to monitor assembly line equipment and make minor
adjustment if necessary. Given that knowledge is causally sustained belief, and that
possession of conceptual structures constitutes belief, it seems obvious that such a
mechanism possesses the necessary and sufficient conditions to know something

about its environment. But can such a mechanism be considered to be intelligent?

If one believes that a person must have a soul in order to be intelligent, this
rules out a machine. However, such an assertion may also rule out & human being.
The mind-body problem is a label which refers to the set of theoretical issues
which arise from a common sense distinction between mind and body. It can be
viewed as an ontological issue which is based on the fact that there is no
vocabulary to describe properties of the mind in purely physicl terms. It can also

be viewed as an explanatory issue, ie, to scientifically understand the phenomencn
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of mind. A dualist is someone who believes that mind and body are composed of
two separate substances. The body is physical and the mind is non—physical. [1,
p.15-36] This can be taken in one of three ways. The first is that the mind and
the body do not interact. The second is that the body affects the mind, but not
visa versa But these conjectures tell us nothing about inteligence, for
understanding and manipulating one’s environment would then be properties of body
alone. The third view on dualism is that of Descartes, wherein the mind and the
body interact Though popular in our culture, this argument has never overcome the
objection that it is incoherent to suppose that a non—phvysical substance can affect a

physical one.

The mind-body problem can perhaps best be dealt with Ockham's razor: Do
not posit plurality without necessity. Another forceful argument against dualism
asserts that thought is a property of organized matter, on par with
impenetrability. [25, p.143-44] Mankind is most highly organized matter, therefore
_it is most intelligent. It is important to note in this sections that there could be no
discussion of ‘artificial’ intelligence without a rejection of the assertion that

intelligence is a property of an immaterial mind.

4.2. Behaviorism

Nevertheless, intelligence is assumed to be a mental predicate. Its attribution
is thus for the present subject to theoretical speculation and not empirical evidence.
Unless, of course, one adheres to the doctrine that mental states are simply
determined links in a causal chain between physical stimuli and behavior. There are
two version to behaviorism. Skinnerian behaviorists maintain that an explanation of

behavior is possible without reference to mental properties. [40] Philosophical
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behaviorists define mental predicates by reference to a language of
observation. [21] However, it may be impossible to define mental predicates in a
way that does not include reference to other mental predicates. [39, p.93]
Futhermore, philosophical behaviorism defines what menta/ predicates entail rather
than defining mental properties themselves; it confuses the ontological issue in

question with the related semantic issues.

Despite this rejection of Behaviorism, it is possible to use behavior as an
indication of belief. Yet it is also possible that two systems have mental
representations for concepts which nevertheless have different functional properties.
A genuine concept must have both semantic and functional properties. The
relationship between the two are the determinants of intentionality. Intentionality is
that aspect of a concept which follows from general principles in semantic memory.
It is easily understood as opposed to a concept's extension, which denotes the set
of existing things to which the concept may be correctly applied. [42, p.10-11] A
conceptual structure may embody a clear and distinct representation of water
without carrying the information that water is equivalent to HZO‘ Intentionality is
particularly interesting in the account of knowledge as causally sustained belief
because it allows for the possibility of forming a concept of something without
recognizing its essential properties. A structure is selectively sensitive to the
information characteristic of the learning situation. Semantic distinctions between
structures of identical functional content render the conception of analytical truths a
simple coding probiem. Mental structures may thus be distinguished, or
type-individuated by their functional properties alone. For instance, if the left—

hand-side of two production rules had the same variable configuration (semantic
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structure), then both rules may be applied. But two different semantic structures
cannot exactly match a variable configuration of a single rule. It is the functional
properties of ceonceptual structures which uniquely identify them. Therefore, even
though a person’s behavior indicates that he believes a liquid he calls "water” boils at
100 degrees ceilcius, it cannot legitimately be inferred that he believes ”HZO” boils at

100 degrees celcius.

4.3. The ldentity Theory

The notion of a mental structure with semantic and functional properties is by
no means new or unique to Dretske. Various /dentity theories make use of the
notion that semantic properties and functional properties are one and the same. In
other words, properites attributable to the mental iife of an organism are identical
to physical properties of the same organism. [41] There are two versions of the
identity theory. The token identity theory simply asserts that every mental event, or
kind is a physical event of some kind. Davidson outlines sketches the token identity

theory as foliows: [, p. 88]

Although the position | describe denies that there are strict psycho—
physical laws, it is consistent with the view that mental characteristics are
in some sense dependent, or supervenient on physical
characteristics..Dependence or supervenience of this kind does not entail
reducibility through law or definition.

In contrast, the type identity theory asserts the existence of strict psycho—physical
laws; that is, that for every mental property, or kind, there exists one physical kind
which is identical with it [38] The type identity theory is attractive because it
implies that understanding of mind could compare to understanding of body. [16,
p.61] But the type identity theory is untenable because evidence suggests that
organisms of various species share mental properties, yet those properties must

have different physical instantiations. [46]
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4.4. Functionalism

The token identity theory is often associated with some brand of
functionalism. Functionalism is the theory that every mental properties are type-—
individuated by their functional role in the behavior of the organism. [39, p.87]
Unlike behaviorists and identity theorists, functionalists are not necessarily
materialists. However, the attraction of functionalism lies in the fact that it renders
feasible the notion of a purely physical mind. [36, p.175] WMoreover, a dualist
functionalist is bound to the implausible thesis that the brain alone cannot explain
human behavior. [15, p.261] Thus, | confine my discussion of functionalism to
materialist functionalism. Materialist functionalism combines the assertion that
every mental event is identical to some physical event with the thesis that mental
properties are type-—individuated by their functional role in the behavior of the
organism. Méterial;st functionalism avoids objections to the type identity theory
because it allows mental properties with the same functional role to have a wide
variety of physical instantiations. It also avoids objections to behaviorism because it
defines mental properties rather than defining what is required for the attribution of

a mental property.

However, objections to materiaiist functionalism do exist; the most forceful
are qualia objections. Qualia is that aspect of human experience of which we are
subjectively concious, such as pain and appearances. Proponents of qualia insist that
the standard for type-—individuating mental states is subjective fe/t experience. [36]
The /inverted qualia argument asserts that the qualitative nature of experience in
two different organisms may be functionally equivalent, but of distinct natural kinds.

For example: two people see the same object. Both have been conditioned to call
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it yellow, yet one actually sees red while the other sees blue. Then there is the
absent qualia argument. This argument states that functional states of two
organisms may be the same though one has felt qualia and the other does not-. A
popular example is that of Searle's Chinese room: a man is given a list of
instructions for manipulating Chinese symbols; unknown to him, he is answering
questions in Chinese. [37, pp.284-85] He experiences functional states without
experiencing the corresponding qualia.  An even clearer example for the absent
qualia argument is that of an android which simulates human behavior but feels
nothing. Functionalists have a ready reply to the inverted qualia argument. They may
state that the laws of physics do not allow for human experiences to be
qualitatively different. Or they may insist that the crucial aspect of qualia is not fe/t
quality, but the functional relationships between mental structures. [6, p. 125] The
second arguments may also be used against the absent qualia argument, in
conjunction with the view that it is physically impossible for physical states to have
motion without having some sort of felt qualia [25] Still a third qualia objection
to functionalism is that mental states are natural kinds whose essence is quailia. This
argument is reminiscent of dualism. Materialist functionalists are committed to a
thesis which implies that qualia are reducible to physical properties. These physical
properties must therefore play functional roles attributable to felt qualia. Under this
interpretation, qualia is that by which we identify a mental state and should not be

confused with its essence.

Another challenging objection to functionalism has been that is is vague.

Attempts to formalize functionalism have left its proponents with two separate

theories. One may be called /ntensional functionalism. Intensional functionalism
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holds that functional roles of-mental structures must be specified by ascriptions of
belief and desire. [10, ch. 1] To understand intensional functionalism, one must be
able to view a system in terms of its physical components and also in terms of it
design, or planned function; intensional functionalism is an account of how the
design stance relates to the physical stance. This intensional stance assumes that a
system's design is optimal given its goals; it thus utilizes a rationality assumption in
ascribing belief and desire. The trouble with a rationality assumption is that to
attribute a strict correlation between a system's goals and its design is to attribute,
but not explain, intelligence. It is simply to assume that jdentical functions utilize
identical mental structures. This view is therefore just as narrow as the type
identity theory.  Another significant problem with intensional functionalism is that
humans are not ideally rational agents. [43, p. 48] They cannot be said to act in

. . . . . 4
strict accordance with their beliefs and desires.

The alternative clarification of functionalism is Turing Machine Functionalism.
A Turing Machine is an abstract representation of a machine which solves problems
by utilizing an effective procedure. [48, ch. 2] An effective procedure is a set of
rules which define behavior step by step; an example is a search through a problem
space. (see page 6) Turing Machine Functionalism is an attempt to specify what is
meant by a 'functional role’ with regard to a mental structure. It draws an analogy
between mental processes and Turing—machine—computable functions. [32]  The
man who invented the Turing Machine concept, Alan Turing, wrote that if a

computer could simulate human conversation well enough to fool an "interrogator”

Though intensional functionalism cannot adequately characterize inteligence, this term must not be
confused with intentionality as defined above. Intentionality does have a place in clarifying the role of

semantic structures.
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50% of the time, then it must be considered to think. [45, p.12] Though this
characterization of intelligence appears behavioristic, a Turing Machine Functionalist
would assert that the attribution of intelligence is necessary upon encountering
intelligent behavior. Block argues that the Turing test conception of intelligence is
not a necessary, but a sufficient condition for intelligence. For it is implausible that
intelligent behavior be produced by a non-intelligent system which simply desires to
appear intelligent. [4, p.13] Furthermore. if a machine can use knowledge to
perform functions which require inteligence if performed by a human, then its
semantic structures must possess the functional properties necessary for intelligence
as well Turing Machine computability is a defense against those who view

functional explanation as a purely hypothetical enterprise. [16]
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CHAPTER 5

CONCLUSION

5.1. Objections

| have attempted to demonstrate that possession of mental structures with
both semantic and functional properties is a necessary condition for manipulating
knowledge and understanding one's environment. If a system possesses such
structures and also exhibits intelligent behavior, then nothing prevents us from
attributing intelligence to that system. However, objections to this view cannot be

ignored. Rather, they must be aired and considered.

Cne objection to this conclusion may be that intelligence cannot be attributed
to a progam which is merely the creation of an intelligent programmer. But this
argument cannot withstand the rebuttal that programmers themselves have been
‘programmed” by their upbringing and their education. [3, p.22] A computer's
mental structures may mature more rapidly than those of a human, but they are
nevertheless a property of the‘ machine, and not a property of its programmer.
Furthermore, an expert system may be prepared to deal with problems which the

knowledge engineer had never even foreseen.

Another objection to the possibility of computer intelligence may be explained

by the fact that people view computers as useful and productive machines.



44

Although true, this characterization glosses over significant differences between
computers and other machines, even those which manipulate input and produce
output. As an illustration of these differences, think of an assembly line machine
which seals bottles with metal caps. Its inputs are filled bottles and metal caps. Its
output is a sealed bottle. In performing its mechanical manipulations, the machine
does not check to see if a bottie is filled before sealing it. It does not check to
see that it is being fed a genuine metal cap rather than a piece of cardboard. It
may perform manipulations on the wrong inputs or on no inputs at all. In contrast,
a computer mediates its input and other symbols with its program. Symbols are
strictly defined. They must be of a certain type. If symbols presented as input are
not of the right type, a computer will not accept them. The machine will perform
its manipulation on only those symbols it recognizes as valid input.  Successful
completion of symbol manipulation requires that all symbols conform to type-
specifications at every stage of computation. If the type of any symbol clashes
with the type required, no output is produced. (Confusion frustrates problem—
solving activity) This illustration highlights two attributes of computers which do not

5
belong to other useful and productive machines.

1. Type definitions provide knowledge of the affective capacity of a
specified symbol.

2. Programs provide a characterization of the possible causal interactions
of a given symbol

Knowledge of both 1 and 2 is necessary and sufficient for wnderstanding a

specific symbol.

5
This illustration also highlights the fact that the analogue nature of a machine contributes nothing to
its understanding of its envircnment; hence, it should not be considered a necessary condition for

inteliigence.
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5.2. A Theoretical Obstacle

Even among those who do not object to the notion of computer
understanding, there exists some disagreement on' the level of intelligence so far
achieved by research in Al David Marr asserts that progress made in expert
systems is misleading, for the development of intelligence must proceed at a much

lower level of human cognition. [27, p. 20]

If one believes that the aim of information—processing studies is to
formulate and understand particular information processing problems, then
it is the structure of those problems that is central, not the mechanisms
through which their solutions are implemented.

Marr views work in Artificial Intelligence at four different levels: basic circuitry
analysis, functional architecture, algorithms, and the theory of the problem to be
so/ved. He asserts that the last level ought to take precedence in Al research and

that it is missing from research in production systems.

A contrasting view is held by Zenon Pylyshyn. He asserts that production
systems may easily represent the functional architecture of the human mind. [33,
p.74] He cites a number of aspects of production systems which he takes to

significantly parallel human cognitive processes. These include: [33, p.81-82]

1. Focused attention on a limited number of symbols at a given time.

2. A data driven environment which accepts input from both internal and
external sources.

3. Recognition of symbols which satisfy specific conditions.

4. The contents of the workspace includes all that occupies the system's
attention (all partial paths toward possible goals).

5. Ease of expansion to include new "beliefs" and "goals’.
6. The space—time tradeoff prompts grouping of data, which corresponds

to the psychological phenomenon of ‘“chunking” related bits of
information.
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Pylyshyn's view seems to coincide with that of Dretske in that information
processing requires abstraction, that information is necessarily lost in the analogue—
to-digital conversion characteristic of the cognitive operations involved in perception.
He further asserts that most existing computational data structures (which he refers
to as semantic networks) are suitable candidates for such internal descriptions. [34,

p-177] In sharp contrast to David Marr, he maintains that [33, p.85]

Any Al system is at some level a psychological theory, simply because
the description of the intelligent task to which it is addressed already is 2
description of some psychological process.

5.3. Final Comments

Even strong advocates of computer intelligence must admit that the
inteiligence of existing Al systems is extremely limited by the problem domain.
Understanding specified symbols is far less complicated than understanding an
environment. It is the degree to which a machine understands its environment that
is a measure of its intelligence. Thus the goal of Artificial Intelligence is to enable a
computer to understand its environment. Because Artificial Intelligence researchers
are steadily making progress toward that goal, at present there exists no barrier to
machine intelligence. Conceptual barriers, however, continue to exist They stem
rom the fact that computers are physically and mentaily different from humans.
Objections to the existence of computer intelligence were considered and dismissed
by Alan Turing in 1950, yet the same arguments still receive attention today. [45]
Though not to be ignored, theological arguments, arguments from conciousness,
creativity and ESP are neatly avoided by the admission that computer intelligence is
undoubtably qualitatively distinct from human intelligence. it is /ntel/igence
nonetheless.  Conceptual barriers are no more compelling than their label implies.
Inability to envision an intelligent computer does not negate the possibility of its

existence.
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