Understanding Security Metrics to Drive Business and Security Results

Jennifer Bayuk
Professor, Systems Security Engineering
Stevens Institute of Technology
for
NJ CISO Executive Summit
• Professor and independent consultant experienced in a wide variety of private security positions including Chief Information Security Officer.

• Created Systems Security Curriculum for Stevens Institute of Technology

• Author of multiple textbooks on security management topics

• Chair and contributor to multiple public and private InfoSec Boards and Committees

• CISA, CISM, CGEIT, CISSP, NJ Licensed PI, Systems Engineering PhD, Thesis in Security Metrics
Session Discovery Topics

1. Leveraging metrics to drive security and business results — *insights into the wide variety of approaches, measurements and characterizations.*

2. The contextual value in metrics designed to show the efficacy of a security program.

3. Risk management metrics versus remediation metrics — *optimizing the use of each.*
Today’s Security Metrics

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target:</td>
<td>Metrics that have a measurable 100% target.</td>
</tr>
<tr>
<td>Monitor:</td>
<td>Metrics that monitor security processes.</td>
</tr>
<tr>
<td>Remediation:</td>
<td>Metrics that show progress toward a security objective.</td>
</tr>
<tr>
<td>Performance:</td>
<td>Metrics that demonstrate capability to accomplish system functionality.</td>
</tr>
<tr>
<td>Vultest:</td>
<td>Metrics that show susceptibility to known threats.</td>
</tr>
<tr>
<td>Resilience:</td>
<td>Metrics that demonstrate system ability to recover from harmful impact.</td>
</tr>
<tr>
<td>Adversary Skills:</td>
<td>Metrics that estimate adversary skills levels.</td>
</tr>
<tr>
<td>Adversary Goals:</td>
<td>Metrics gleaned from intelligence on adversary motivation and justification.</td>
</tr>
<tr>
<td>Stochastic Models:</td>
<td>Metrics that combine measures with probability estimates.</td>
</tr>
<tr>
<td>Deterministic Models:</td>
<td>Metrics that combine measures with inference rules to form conclusions about security.</td>
</tr>
<tr>
<td>Internal activity:</td>
<td>Metrics that chart work activity (“busyness”).</td>
</tr>
<tr>
<td>External activity:</td>
<td>Metrics that track threats (“weather”).</td>
</tr>
</tbody>
</table>
Target Example A

Measure X:
The current number of personnel in each department (the target).

Measure Y:
The number of personnel in each department who have been through security training.

Department Security Awareness Metric: $\frac{Y}{X}$
Target Example B

Measure X:
The number of computers in operation running a given operating system (OS).

Measure Y:
The number of computers in operation running a given OS that are configured as per security standards daily configuration checks.

OS Security Metric: \(\frac{Y}{X} \)
Target Example C

Daily Measure W:
The number of firewall devices in operation.

Daily Measure X:
The number of firewall devices whose configuration was retrieved in past 24 hours by network management system.

Daily Measure Y:
The number of firewall devices configurations that deviate from yesterday’s configuration.

Daily Measure Z:
The number of deviant device configurations where deviations directly compare to authorized planned changes.

Daily Firewall Device Metric, Suspect Devices as % of Total: \(\frac{(W-X) + (Y-Z)}{W} \)
Monitor Example A

Measure S:
The set of work orders opened by each internal help desk person P in category “security” and subcategory “password reset” with resolution “reset” in 24 hour period.

For each W in set S,
Measure T: Elapsed time of W, between work order open to close.
Measure U: Audit log in identity management system of successful queries within elapsed time T for user U, as identified in W.
Measure R: Recordings of P asking user U for security identification code within time T, and U’s correct response.
Measure L: All P’s password resets in same 24-hour period as S.

Daily Help Desk Person Monitor Metric:
If (Count of L > Count of S), Then P = Bad
Else For each W in set S,
If (U and R exist) Then P=Good
Else If (R exists) then P=Shortcuts
Else P= Bad
Target Example C Monitor Overlay

Daily Measure W:
The number of firewall devices in operation.

Daily Measure X:
The number of firewall devices whose configuration was retrieved in past 24 hours by network management system.

Daily Measure Y:
The number of firewall devices configurations that deviate from yesterday’s configuration.

Daily Measure Z:
The number of deviant device configurations where deviations directly compare to authorized planned changes.

Daily Firewall Suspect Device Metric: \(\frac{(W-X) + (Y-Z)}{W}\)

Measure M: The number of false negative comparisons by network operations staff.
Remediation Example

Identity Management Deployment Progress

100%

1st QTR 2nd QTR 3rd QTR

- Estimated percent of users not yet identified
- % of users that are not mapped to an existing valid identity
- % users manually identified, but not yet configured to automatically correlate
- % users that automatically correlate to an identity management system index
Performance Examples

Six Sigma: Target of less than 3.4 defects per million activities

ITIL: Service level management targets

QFD: Customer satisfaction measures

Must be business-driven, not security-driven.
Vulntest Example

Red Team Test Results

“Badness-ometers” – Gary McGraw

Typically not reliable or repeatable
Skills and Goals Examples

Skills and Goals metrics do not measure an implemented system, but some aspect of the system’s expected interaction with an environment that includes hostile adversaries.

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Disgruntled Insiders</th>
<th>Organized Criminals</th>
<th>Terrorists</th>
<th>Hactivists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Risk</td>
<td>voluntary workforce participation in company events</td>
<td>software that controls financial assets is only internally accessible</td>
<td>domestic-only cyberspace presence</td>
<td>consistently positive press coverage</td>
</tr>
<tr>
<td></td>
<td>workforce employer lawsuits are above industry average</td>
<td>publicly accessible software allows customers to control assets</td>
<td>international cyberspace presence</td>
<td>negative press coverage related to special interests</td>
</tr>
<tr>
<td></td>
<td>unexplained technology problems within firm are a frequent event</td>
<td>publicly accessible software allows customers to transfer control of financial assets</td>
<td>repeated attempts by foreign nationals to cause cyber-damage to firm</td>
<td>active lobbying to government(s) against firm activities by special interests known to resort to cyber attacks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>publicly accessible software allows firm insiders to transfer control of firm and/or customer financial</td>
<td>declarations by terrorist(s) of intent to cause cyber-damage to firm.</td>
<td>declarations by hackivists of intent to cause cyber-damage to firm.</td>
</tr>
<tr>
<td>High Risk</td>
<td>insider cyber attacks are a frequent event</td>
<td>publicy accessible software allows firm insiders to transfer control of firm and/or customer financial</td>
<td>declarations by terrorist(s) of intent to cause cyber-damage to firm</td>
<td>declarations by hackivists of intent to cause cyber-damage to firm.</td>
</tr>
</tbody>
</table>

Note – such subjective measures are typically ordinal, but nevertheless, inform decisions.
Stochastic Model Example

Measures are associated with alternative probabilities of occurrence, and compared to an ideal outcome in order to determine “best” course of action.

Deterministic Model Example

Measures are identified for each step using forensic techniques designed to identify attacks in progress.

Internal Activity Example

Measure W:
The number of calls to internal help desk in category “security” and subcategory “request for admin rights.”

Measure X: subcategory “escalate privilege.”

Measure Y: subcategory “reset password.”

Measure Z: subcategory “provision application.”

Measure T: The total number of calls to internal help desk.

Security-Related Internal Help Desk Metric: \(\frac{W + X + Y + Z}{T} \)
External Activity Example

Measure X:
The number of dropped firewall connections for a 24 hour period.

Measure Y:
The number of dropped firewall packets for a 24 hour period coming from the same source address, or attacking the same port for that period.

Network Periphery Metric: $\frac{Y}{X}$
Security Risk Analysis

The basic approach has been consistent throughout decades of variation.

Debates are not about structure of assessment, but about scope of assessments, probability measures, and appropriate communication techniques.
Security Risk Management

Security Risk Mitigation

“The specific beliefs and approaches that organizations embrace with respect to these risk-related concepts affect the course of action selected by decision-makers.”

Security Metrics ➔ Risk Analysis ➔ Security Architecture

Security Metrics Taxonomy

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>BEHAVIOR</th>
<th>THREAT</th>
<th>MODELS</th>
<th>ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET</td>
<td>MONITOR</td>
<td>REMEDIATION</td>
<td>PERF</td>
<td>VUNTEST</td>
</tr>
</tbody>
</table>

Construction yields a set of Measurable Security Attributes

Security Theory Attribute Construct (STAC)

<table>
<thead>
<tr>
<th>DESIGN VERIFICATION</th>
<th>OPERATION VALIDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET</td>
<td>MONITOR</td>
</tr>
</tbody>
</table>
Building on target example C, a simple security theory constructed from measurable system attributes is:

“Security” =def
“all devices are configured as designed
AND
monitoring reveals no errors in execution of the process that maintains configuration
AND 0 vulns are found in testing for known vulns
AND proper failover occurs upon damaging impact”

+ 99.99999999% uptime

Secure System

configuration is maintained while under attack
Security SME Survey Results

The most important attributes to measure included:

- Ability to articulate, maintain, and monitor system mission.
- System interfaces accept only valid input.
- Capability for incident detection and response.
- Ability to withstand targeted penetration attacks by skilled attack teams.

The least important attributes to measure included:

- Percentage of systems or components that have passed security configuration tests.
- Security standards used to set requirements.

Yet – All measures are important!

Security Risk Mitigation using STAC

To construct a theory that any given system is secure must emphasize validation, and so requires identification of at least four types of attributes:

1. Correct configuration, to allow for design verification.
2. Effective performance, to allow for operation validation.
3. Ability to deflect known threats, or vulnerability validation.
4. Ability to adapt to unexpected harmful impact, or resiliency validation.
Mobile Architecture Example A

1. Mobile App Server sends user email with one-use link that allows user to registers device. Device Registration retrieves whatever unique IDs may be available on the device (e.g., UDID, MEI, MSISDN) and allows user to select a user ID.

2. Mobile App Server sends user ID to Mobile Key Register and receives a private key. Register retains the public half of the key indexed by the user ID.

3. Mobile App server sends the private key to now-registered user.

4. Mobile user starts browser and downloads java script that connects to Mobile App Server via SSL on Internet and presents user ID and device IDs encrypted with random elements using private key.

5. Mobile App Server retrieves public key from Register, decrypts mobile device data, compares it to that registered by user before granting requests for application data.

6. Mobile App Server encrypts data with user public key before sending, also logs transaction.

7. Local device java script app minimizes and encrypts data footprint on device.
Mobile Architecture Example B

1. User authenticates to internal wireless network and registers device. User downloads and installs a custom mobile application, which retrieves unique device identifiers (e.g., UDID, IMEI, MSISDN). Register sends a private key to the user via the application and retains the public half of the key indexed by the user ID.
2. Mobile Key Register sends the user ID and device unique IDs to Mobile App Server.
3. Mobile application connects to Mobile App Server via public Internet and presents data requests together with user ID and device IDs, all encrypted with random elements using private key.
4. Mobile App Server retrieves public key from Mobile Key Register, decrypts mobile device data, compares it to that registered by user before granting request for application data.
5. Mobile App Server encrypts data with user public key before sending, also logs transaction.
6. Custom coded mobile app minimizes and encrypts data footprint on device.
Mobile System A versus B
Security Theory Attribute Construction

1. Verified ability for the application server to automatically recognize only registered mobile device users minimizes risk that application data will be exposed to unauthorized individuals. B is same as A, though different components selected, based on difference in performance requirement of #2.

2. Users shall have access to application anywhere any time; in B, from external networks only from preregistered devices.

3. Vulntest shall reveal, in worst case, data exposure on lost or stolen devices would be limited to small quantities of data of relatively low sensitivity. B is same as A.

4. Diverse Internet architecture and agile software support structure render system flexible enough to adapt to unexpected attack. B is same as A.
1. Assume design metrics as in targets and monitor examples.
2. Assume six sigma performance metrics except in cases where users with new devices are not on internal network.
3. Note different architecture would likely produce different vulntest metrics:

 - G. Register new device
 - I. Mug user
 - J. Intelligence and deception
 - M. Steal inactive device
 - N. Possess and clone device
 - R. Host a proxy
 - W. Breach network
 - X. Exploit software
 - Y. Obtain insider access
 - Z. Steal key server data
 - AA. Exploit key server vulns
 - BB. Social engineer access
 - CC. Plant malware
 - DD. Attack DNS
 - EE. Tamper with supply chain
 - FF. Insider fraud or theft
 - HH. Gain physical access
 - II. Change entitlement data
 - JJ. Social engineer entitlements

 Mobile System A
 Mobile System B

 Also Requires CC or DD or EE
 Also Requires X
 Also Requires W
 Also Requires Z and AA
 Also Requires Y and AA
 Also Requires Y and Z
 Also Requires CC or DD or EE
 Also Requires R
 Also Requires R

4. Mobile System A would be constrained in changing off-the-shelf mobile device software. This would likely affect resiliency metrics.
For two systems with the same mission and purpose, the performance, the vulnTEST and the resilience requirements may be expected to be similar enough such that the best metric score in each of these three areas would become the 100% mark for the purposes of STAC.

Where a system is measured in isolation, the performance, the vulnTEST and the resilience requirements may instead be set by stakeholder expectations.
Take-Aways

1. You cannot create a theory of what it means for a system to be secure unless you understand the mission or purpose of the system.

2. You get out of security metrics what you put into them, there is no industry standard approach that will help with validation.

3. Industry standards are focused on verification, and are useful in that capacity.
Questions, Discussion?

jennifer@bayuk.com
www.bayuk.com